XML, DTD, and
XML Schema

Introduction to Databases
CompSci 316 Spring 2017

E. DUKE
COMPUTER SCIENCE

So far

* Relational Data model
* Database design (E/R diagram, normalization)
*SQL

* Database internals (physical organization, index,
query processing, query optimization)

* Transaction

* All mostly focused on “structured data”

Structured vs. unstructured data

* Relational databases are highly structured

* All dataresides in tables

* You must define schema before entering any data

* Every row confirms to the table schema

* Changing the schema is hard and may break many things
* Texts are highly unstructured

* Datais free-form

* There is no pre-defined schema, and it’s hard to
define any schema

* Readers need to infer structures and meanings

What’s in between these two extremes?

Compsci 316: Schedule
Introduction to
)atabase

Systems
(Spring 2017)

Semi-structured data

* Observation: most data have some structure, e.g.:

* Book: chapters, sections, titles, paragraphs, references,
index, etc.

* Item for sale: name, picture, price (range), ratings,
promotions, etc.

* Web page: HTML

* Ideas:
1. Ensure data is “well-formatted”
2. If needed, ensure datais also “well-structured”
* But make it easy to define and extend this structure
3. Make data “self-describing”

HTML: language of the Web

<hI>Bibliography</h1>
<p><i>Foundations of Databases</i>, -
Abiteboul, Hull, and Vianu Bibliography

Addison Wesley, 1995
<p>. . Foundations of Databases, Abiteboul, Hull, and Vianu
Addison Wesley, 1995

Abiteboul, Buneman, and Suciu
fmann, 1999

* It’s mostly a “formatting” language

* It mixes presentation and content
* Hard to change presentation (say, for different displays)
* Hard to extract content

* Hard for program to read it (italics and bold does not
matter to a program)

4/5/17

XML: eXtensible Markup Language

<bibliography>

<book>
<title>Foundations of Databases</title> -
<author>Abiteboul</author> Bibliography
<author>Hull</author>

<author>Vianu</author>

Foundations of Databases, Abiteboul, Hull, and Vianu
dd

Addison Wesley, 1995
i s il

<year>1995</year> Data on the Teb, Abiteboul, Buneman, and Suciu
</book> Morgan Kaufimann, 1999
<book>...</book>

</bibliography>

* Text-based

* Capture data (content), not presentation

* Data self-describes its structure
* Names and nesting of tags have meanings!

<bibliography>
. <book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
XML terminolo A
<author=Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

* Tag names: book, title, ...
* Start tags: <book>, <title>, ...
* End tags: </book>, </title>, ...
* An element is enclosed by a pair of start and end
tags: <book>...</book>
* Elements can be nested:
<book>...<title>...</title>...</book>
* Empty elements textbook></is_textbook>
* Can be abbreviated: <is_textbook/>
* Elements can also have attributes:
<book ISBN="..." price="80.00">

<book>
<Jbibliography>

& Ordering generally matters (can specify), except
for attributes

Other nice features of XML

* Portability: Just like HTML, you can ship XML data
across platforms

* Relational data requires heavy-weight API’s
* Flexibility: You can represent any information
(structured, semi-structured, documents, ...)
* Relational data is best suited for structured data

* Extensibility: Since data describes itself, you can
change the schema easily

* Relational schema is rigid and difficult to change

Well-formed XML documents

A well-formed XML document

* Follows XML lexical conventions
* Wrong: <section>We show that x < 0...</section>
* Right: <section>We show that x &It; 0...</section>
* Other special entities: > becomes > and & becomes &
* Contains a single root element
* Has properly matched tags and properly nested
elements

* Right: <section>...<subsection>...</subsection>.

ction>
* Wrong: <section>...<subsection>...</section>...</subsection>

A tree representation

Foundations
of Databases

Abiteboul Hull

Introduction In this

section we

introduce the

notion of
semi-
structured
data

More XML features

* Processing instructions for apps: <? ... 7>

* An XML file typically starts with a version declaration using this
syntax: <?xml version="1.0"?>

e Comments: <!-- Comments here -->
* CDATA section: <![CDATA[Tags: <book>,...]]>
* ID’s and references

<person id="012"><name>Homer</name>...</person>
<person id="034"><name>Marge</name>. .. </person>

<person id="056" father="012" mother="034">
<name>Bart</name>...
</person>...

* Namespaces allow external schemas and qualified names

<myCitationStyle:book xmlns:myCitationStyle="http://..../mySchema">
<myCitationStyle:title>...</myCitationStyle:title>
<myCitationStyle:author>...</myCitationStyle:author>...

</book>

* And more...

4/5/17

Now for some
more structure...

Qding

Valid XML documents

* Avalid XML document conforms to a
Document Type Definition (DTD)
* ADTD is optional

* A DTD specifies a grammar for the document
< Constraints on structures and values of elements, attributes, etc.
* Example

<!DOCTYP}: bibliography [

<!ELEMENT bibliography (book+)>
<!ELEMENT book (title, author*, publlsher 2, year?, section*)>
<!ATTLIST book ISBN ID #RE! Q
<!ATTLIST book price CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!IELEMENT publisher (#PCDATA)>
<IELEMENT year (#PCDATA)>
<IELEMENT i ({PCDATA)>
<IELEMENT content (#PCDATA[i)*>
<!ELEMENT section (title, content?, section*)>

DTD explained

IDOCTYPE bibliography [
bibliography is the root element of the document
<!ELEMENT bibliography (book+)> One or more
blbllography consists of a sequence of one or more book elements
1))
!ELEMENT book (title, author*, publisher? r?, section)> Zero or more
Zero or one
book consists of a title, zero or more authors,
an optional publisher, and zero or more section’s, in sequence
!ATTLIST book ISBN ID #REQUIRED>
L book has a required ISBN attribute which is a unique identifier
TLIST book price CDATA #IMPLIED>
book has an optional (IMPLIED)
price attribute which contains <bibliography>
character data <book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases<fitle>
<author>Abiteboul</author>

" . <author>Hull</author>
Other attribute types include <author>Vianu</author>

IDREF (reference to an ID), i;::{l;slh;;i\;c:;? Wesley</publisher>
IDREFS (space-separated list of references), </book>...
enumerated list, etc. </bibliography>

DTD explained (cont’d)

<!ELEMENT title (#PCDATA)> PCDATA is text that will be parsed
<!ELEMENT author CDATA), * < etc. will be parsed as entities
<!ELEMENT publisher (#*CDATA)> Use a CDATA section to include text verbatim
<!ELEMENT year (#PCDATA)>

!ELEMENT i (#PCDATA)

author, publisher, year, and i contain parsed character data
!ELEMENT content (#PCDATA[i)*

content contains mixed content: text optionally interspersed with i elements
<!ELEMENT section (title, content?, section*)>
Recursive declaration:
Each section begins with a title,
followed by an optional content, <section><title>Introduction</title>
and then zero or more <content>In this section we introduce
. the notion of <i>semi-structured data</i>...
(sub) section’s <eontent>
<section><title>XML<fitle>
<content>XML stands for...</content>
</section>
<section><title>DTD<title>
<section><title>Definition</title>
<content>DTD stands for....</content>
</section>
<section><title>Usage</title>
<content>You can use DTD to...</content>
</section>
</section>
</section>

Using DTD

* DTD can be included in the XML source file
+ <2xml version="1.0"?>
'DOCTYPE bibliog

<bibliography>

* DTD can be external

« <2xml version="1.0">
!DOCTYPE bibliography
<bibliography>

dtds/bib.dtd

<Jbibliography>

<?xml version="1.0"?>
IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN
http://www.w3.org/TR/xhtml1/DTD/xhtml 1 -strict.dtd

<html>

Annoyance: content grammar

* Consider this declaration:

<!ELEMENT pub-venue
((name, address, month, year
(name, volume, number, y

° Ul” means Uor”
* Syntactically legal, but won’t work

* Because of SGML (standard generalized markup
language) compatibility issues

* When looking at name, a parser would not know which
way to go without looking further ahead

* Requirement: content declaration must be
“deterministic” (i.e., no look-ahead required)

» Can we rewrite it into an equivalent, deterministic one?
* Also, you cannot nest mixed content declarations
e lllegal: <IELEMENT Section (title, (#PCDATA[)*, section*)>

4/5/17

Annoyance: element name clash

* Suppose we want to represent book titles and
section titles differently
* Book titles are pure text: (#PCDATA)
* Section titles can have formatting tags:
(#PCDATAi[bjmath)*

* But DTD only allows one title declaration!

* Workaround: rename as book-title and section-title?
* Not nice—why can’t we just infer a title’s context?

Annoyance: lack of type support

* Too few attribute types: string (CDATA), token (e.g.,
ID, IDREF), enumeration (e.g., (red|green|blue))
* What about integer, float, date, etc.?

* ID not typed
* No two elements can have the same id, even if they have
different types (e.g., book vs. section)
* Difficult to reuse complex structure definitions
* E.g.: already defined element E1 as (blah, bleh, foo?, bar*,
...); want to define E2 to have the same structure
in DTD provide a workaround
E.struct '(blah, bleh, foo?, bar*, ...)"

!ELEMENT E1 %E struct;
<!ELEMENT E2 %E.struct;>

* Something less “hacky’?

Now for even
more structure support...

201211 509deb91920762452179065 jpa

XML Schema

* A more powerful way of defining the structure and
constraining the contents of XML documents

* An XML Schema definition is itself an XML
document
« Typically stored as a standalone .xsd file
* XML (data) documents refer to external .xsd files

* W3C recommendation

* Unlike DTD, XML Schema is separate from the XML
specification

4/5/17

XML Schema definition (XSD)

<?xml version="1.0"?>

xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema">
Defines xs to be the namespace
described in the URL

Uses of xs: within the xs:schema element now
refer to tags from this namespace

</xs:schema>

XSD example

<xs:element name="book""> We are now defining an element named book
<xs:complexType> Declares a structure with child elements/attributes as opposed to just text)
<xs:sequence> Declares a sequence of child elements, like “(..., ..., ...)" in DTD

awthor” type
0" max

xs:string"
rs="unbounded" />

Like author* in DTD

Like publisher? in DTD

element name:
minOccu

tion" Like section* in DTD; section is defined elsewhere
"0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ISBN" type="xs:string" use="required"/>

Declares an attribute under book... and this attribute is required
<xs:attribute name="price" type="xs:decimal" use="optional"/>

- This attribute has a decimal value, and it is optional
smplexType>

</xs:element>

‘ment name=""title" type=""xs:string"/> A leaf element with string content

A leaf element with integer content

Keys

<xs:element name=""bibliography'>
<xs:complexType>... ... </xs:complexType>
<xs:key name="bookKey">
<xs:selector xpath="./book"' />
<xs:field xpath="@ISBN"/>
</xs:key>
</xs:element>
* Under any bibliography, elements reachable by
selector “./book” (i.e., book child elements) must have

unique values for field “@ISBN” (i.e., 1SBN
attributes)
* In general, a key can consist of multiple fields
(multiple <xs:field> elements under <xs:key>)
* More on XPath in next lecture

Foreign keys

* Suppose content can reference books

hy">
complexType>

</xs:element>

* Under bibliography, for elements reachable by selector
““.//book-ref” (i.e., any book-ref underneath):
values of field “@ISBN” (i, ISBN attributes) must appear as
values of bookKey, the key referenced
* Make sure keyref is declared in the same scope

Why use DTD or XML Schema?

* Benefits of not using them
* Unstructured data is easy to represent
* Overhead of validation is avoided

* Benefits of using them
* Serve as schema for the XML data
* Guards against errors
* Helps with processing
* Facilitate information exchange

* People can agree to use a common DTD or XML Schema to
exchange data (e.g., XHTML)

XML versus relational data

Relational data XML data

* Schemais always fixedin * Well-formed XML does not
advance and difficult to require predefined, fixed
change schema

* Simple, flat table structures * Nested structure;
ID/IDREF(S) permit arbitrary

graphs
* Ordering of rows and * Ordering forced by
columns is unimportant document format; may or

may not be important
* Exchange is problematic * Designed for easy exchange

* “Native” support in all * Often implemented as an
serious commercial DBMS “add-on” on top of relations

Case study

* Design an XML document representing cities,
counties, and states
* For states, record name and capital (city)
* For counties, record name, area, and location (state)
* For cities, record name, population, and location (county
and state)
* Assume the following:
» Names of states are unique
* Names of counties are only unique within a state
* Names of cities are only unique within a county
* Acity is always located in a single county
* A county is always located in a single state

A possible design

name xs:string
capital_city_id xs:string(

name xs:string
area xs:decimal

id xs:string
name xs:string
population xs:integer

Declare stateKey in geo_db with
Selector ./state R B
Field @name Declare countyInStateKey in state with

Selector ./county

Field @name Declare cityInCountyKey in county with

Selector ./city
Declare cityldKey in geo_db with Field @name
Selector ./state/county/city
Field @id
Declare capitalCityldKeyRef in geo_db referencing cityldKey, with
Selector ./state
Field @capital_city_id

4/5/17

Additional slides

XSD example cont’d

* To complete bib.xsd:
:element name="bibliography">
<xs:complexType>

:sequence>

<xs:element ref="book" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

complexType>
</xs:element>
* To use bib.xsd in an XML document:

?xml version="1.0"?>

<bibliography xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file:bib.xsd">

<book>... ... </book>

<book>... ...</book>

</bibliography>

Restrictions

mpleType name="priceType">
:restriction base="xs:decimal">
<xs:minlnclusive value="0.00"/>

</xs:restriction>

impleType>

:simpleType name="status Type">
<xs:restriction base="xs:string">

<xs:enumeration value="in stock"/>

s:enumeration value="out of stock"/>

<xs:enumeration value="out of print"/>

restriction>

</xs:simpleType>

XSD example cont’d

<xs:element name="section">
xs:complexType
<xsisequence>

xs:element name="ti

e type="xs:string"/>
<xstelement name="content" minOccurs="0" maxOccurs="1
xs:complexType mixed

A Compositargice in0cen
xsisequence; .

. s:glement name="i" type="xs:string"
this one declares “"¢" 1AMeT T peTRs g

a list of alternativesynt name="

"0" maxOccurs="unbgfunded">

fike “(...|-.) Bhojce , o
in DTD Like (#PCDATAi[b)* in DTD
xs:complexType>
xs:element
xs:element ref="section” minOccurs="0" maxOccurs="unbounded",
Recursive definition
</xsisequen

xs:complexType

</xs:element

Another title definition; can be different

from book/title

Declares mixed content
(text interspersed with structure below)

min/maxOccurs can be
attached to compositors too

Named types

* Define once:

s:complexType name="formatted TextType" mixed="true">

choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="i" type="x

ring"/>
<xs:element name="b" type="xs:string"/>
</xs:choice>

</xs:complexType>

* Use elsewhere in XSD:

<xs:element name="title" type="formattedTextType"/>

<xs:element name="content" type="formatted TextType"
minOccurs="0" maxOccurs="1"/>

4/5/17

