XML, DTD, and
XML Schema

Introduction to Databases
CompSci 316 Spring 2017

DUKE

COMPUTER SCIENCE

|



So far

* Relational Data model
» Database design (E/R diagram, normalization)
» SQL

» Database internals (physical organization, index,
query processing, query optimization)

* Transaction

* All mostly focused on “structured data”



Structured vs. unstructured data

* Relational databases are highly structured
* All data resides in tables
* You must define schema before entering any data
* Every row confirms to the table schema
* Changing the schema is hard and may break many things

* Texts are highly unstructured

e Datais free-form

* There is no pre-defined schema, and it’s hard to
define any schema

* Readers need to infer structures and meanings

What’s in between these two extremes?



CompsSci 316: Schedule 4
Introduction to

Database
Systems The “notes” links in the “Topic” column below are usually available by 3

(Spring 2017) pm on the day of the lecture. They are intentionally incomplete in order to

keep the lectures more lively. You can download and/or print them for
eme taking notes during the lecture. They may contain typos/errors that will be

Schedule corrected only in the final and complete version of the slides, available

e through the “slides” links after the lecture.

Help

Unless otherwise noted, the section numbers in the “Reference” column

refer to the book by Garcia-Molina, Ullman, and Widom (2nd Ed.).

Gradiance
Discussion

ebSubmit

The schedule below for the lectures is tentative. Please check the
Solutions & Grades

website and emails for the updates frequently.

Week Date Day Topic Assignment Reference
1 om w s e i
€« (o] www.amazon.com/s/ref=sr_nr_n_67rh=n%3A2625373011%2Cp_n_theme_browse-bin%3A2650365011%2Ck%3Asimpsons&keywords=simpsons&ie=UTF8&qid=1413... =
Sponsored by Hershey
d =y 1)

2 01116 M amazp[!m Jun's Amazon.com  Today's Deals ~ Gift Cards ~ Sell  Help ,’hllowm\\ S‘(ep * >she
Shop by o Hello, Jun Try Wish
Department ~ Seach | Movies 8TV simpsons n Your Account ~  Prime ~ *7 Cart~ List -

01/18 w Movies & TV New Releases Best Sellers  Deals Blu-ray TV Shows Kids & Family ~ Anime  All Genres  Amazon Instant Video Prime Instant Video  Your Video Library  Trade-In

1-16 of 167 results for Movies & TV : Kids & Family : “simpsons” Sort by Relevance $ E ==

Show results for Format
< Any Department
Movies & TV DVD Blu-ray Amazon Instant Video VHS See more...
TV (70)
Movies (94) . i
The Simpsons Movie 2007 pe-13 cc
oo Shop Instant Video ~ (395)
Refine by S{""'-\‘f $9.99 - $12.99 Runtime: 1 hr27 mins
Eligible for Free Shipping ‘;J 4 —V'ﬂ:;: Buy movie Starring: Dan Castellaneta, Julie Kavner, et al.
Free Shipping by Amazon } Watch instantly on your PS3, Xbox, Kindle Fire, iPad, PC and Directed by:  20TH_CENTURY_FOX
other devices. - -
Format i
DVD (110) |
Blu-ray (4)
Amazon Instant Video (37) The Simpsons Season1 1989 cc
oo s | Shop Instant Video )
+ See more
HSENEN  $1.99 - $17.99
Genre Buy episodes or Buy season

. Watch instantly on your PS3, Xbox, Kindle Fire, iPad, PC and

< Any Genre
other devices.

Comedy

Kids & Family
Action & Adventure
Drama

Mystery & Thrillers
Westerns
Romance
Documentary
Horror

The Simpsons Season 26 2014 cc
Shop Instant Video Myl
$1.99 - $44.99

Buy episodes or Buy TV Season Pass
Watch inetantlu n voiir PSR Xhay Kindla Fira iPad PC and




Semi-structured data

* Observation: most data have some structure, e.g.:
* Book: chapters, sections, titles, paragraphs, references,
index, etc.

* Item for sale: name, picture, price (range), ratings,
promotions, etc.

* Web page: HTML

e |deas:
1.  Ensure data is “well-formatted”’

2. If needed, ensure data is also “well-structured”
* But make it easy to define and extend this structure

3. Make data “self-describing”



HTML: language of the Web

<h1>Bibliography</h1>
<p><i>Foundations of Databases</i>,

Abiteboul, Hull, and Vianu Bibliographv

<br>Addison Wesley, 1995 ¥

<p>- .. Foundations of Databases, Abiteboul, Hull, and Vianu

Addison Wesley, 1995

Data on the Web. Abiteboul. Buneman. and Suciu
Morgan Kaufmann, 1999

* It’s mostly a “formatting” language

* |t mixes presentation and content
 Hard to change presentation (say, for different displays)
* Hard to extract content

* Hard for program to read it (italics and bold does not
matter to a program)



XML: eXtensible Markup Language

<bibliography> %) Morilla Firefox
<book>
<title>Foundations of Databases</title> B.bl. h ]
<author>Abiteboul</author> 1 lograp .,V
<author>Hull</author>
<author>Vianu</author> Foundations of Databases, Abiteboul, Hull, and Vianu
<publisher>Addison Wesley</publisher> Addison Wesley, 1993
<year>1995</year> Data on the Web. Abiteboul, Buneman, and Suciu
</book> Morgan Kaufmann, 1999
<book>...</book>
</bibliography>

* Text-based
* Capture data (content), not presentation

* Data self-describes its structure
* Names and nesting of tags have meanings!



Other nice features of XML

* Portability: Just like HTML, you can ship XML data
across platforms
* Relational data requires heavy-weight API’s

* Flexibility: You can represent any information
(structured, semi-structured, documents, ...)

e Relational datais best suited for structured data

 Extensibility: Since data describes itself, you can
change the schema easily
* Relational schema is rigid and difficult to change



<bibliography>
<book ISBN="ISBN-10" price="80.00">

: <title>Foundations of Databases</title>
t e rl I I I n O O gy <author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>

<year>1995</year>

* Tag names: book, title, ... </book>...

</bibliography>

* Start tags: <book>, <title>, ...
* End tags: </book>, </title>, ...

* An element is enclosed by a pair of start and end
tags: <book>...</book>

e Elements can be nested:
<book>...<title>...</title>...</book>

* Empty elements: <is textbook></is textbook>
* Can be abbreviated: <is textbook/>

* Elements can also have attributes:
<book ISBN="..." price="80.00">

# Ordering generally matters (can specify), except
for attributes



Well-formed XML documents

A well-formed XML document
* Follows XML lexical conventions

* Wrong: <section>We show that x <0...</section>

* Right: <section>We show that x &It; 0...</section>
* Other special entities: > becomes &gt; and & becomes &amp;

* Contains a single root element

* Has properly matched tags and properly nested
elements

e Rj ght: <section>...<subsection>...</subsection>...</section>

* Wrong: <section>...<subsection>...</section>...</subsection>

10



A tree representation

bibliography

title author author author publisher @ @ ces

Foundations Abiteboul Hull Vianu Addiso 1995
of Databases Wesley

Introduction In this
section we
introduce the
notion of -
semi-
structured

data



More XML features

* Processing instructions for apps: <7 ... 7>

* An XML file typically starts with a version declaration using this
syntax: <?xml version="1.0"7>

e Comments: <!-- Comments here -->
* CDATA section: <I[CDATA|Tags: <book>,...]]>
e |D’s and references

<person id="012"><name>Homer</name>...</person>

<person id="034"><name>Marge</name>...</person>

<person id="056" father="012" mother="034">
<name>Bart</name>...

</person>...

* Namespaces allow external schemas and qualified names

<myCitationStyle:book xmlns:myCitationStyle="http://.../mySchema'">
<myCitationStyle:title>...</myCitationStyle:title>
<myCitationStyle:author>...</myCitationStyle:author>...

</book>

e And more...

12



ot el = | # w7,
- :
- r
i o
Kb OrED
£ 7

https://commons.wikimedia.org/wiki/File:Hundertwasser 04.jpg

Now for some
more structure...

13



Valid XML documents

e A valid XML document conforms to a
Document Type Definition (DTD)

* ADTD is optional

* A DTD specifies a grammar for the document
» Constraints on structures and values of elements, attributes, etc.

* Example

<IDOCTYPE bibliography [
<!IELEMENT bibliography (book+)>
<IELEMENT book (title, author*, publisher?, year?, section*)>
<IATTLIST book ISBN ID #REQUIRED>
<IATTLIST book price CDATA #IMPLIED>
<IELEMENT title (#PCDATA)>
<IELEMENT author (#PCDATA)>
<IELEMENT publisher (#PCDATA)>
<IELEMENT year (#PCDATA)>
<IELEMENT 1 (#PCDATA)>
<IELEMENT content (#PCDATA|1)*>
<!IELEMENT section (title, content?, section®)>

14



15

DTD explained

<IDOCTYPE bibliography [
bibliography is the root element of the document
<IELEMENT bibliography (book+)> One or more
bibliography consist‘ﬁf?sfequence of one or more book elements

<| i * i 9 ? ion*)>
'ELEMENT book (title, author®, publisher?, year?, section®) - aro OF More

Zero or one
book consists of a title, zero or more authors,
an optional publisher, and zero or more section’s, in sequence

<!ATTLIST book ISBN ID #REQUIRED>

book has a required ISBN attribute which is a unique identifier
<IATTLIST book price CDATA #IMPLIED>

L book has an optional (IMPLIED)

price attribute which contains <bibliography>

ch aracter d ata <book ISBN="ISBN-10" pI'iCC="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>

Other attribute types include <author>Vianu</author>

IDREF (referen ce to an ID) <publisher>Addison Wesley</publisher>
) <year>1995</year>

IDREFS (space-separated list of references), </book>...

enumerated list, etc. </bibliography>



DTD explained (cont’d)

<IELEMENT title (#PCDATA)> PCDATA is text that will be parsed
<!ELEMENT author (#?CDATA)> e &lt; etc. will be parsed as entities
<!ELEMENT publisher (#PCDATA)> « Use a CDATA section to include text verbatim

<IELEMENT year (#PCDATA)>
<IELEMENT 1 (#PCDATA)>
L, author, publisher, year, and i contain parsed character data

<!IELEMENT content (#PCDATA|1)*>
L, content contains mixed content: text optionally interspersed with i elements

<!IELEMENT section (title, content?, section™)>
L_, Recursive declaration:

Each section begins with a title,

followed by an optional content, <section><title>Introduction</title>
and then zero or more <content>In this section we introduce

1> .y the notion of <i>semi-structured data</i>...
(sub) section’s <Jcontent>

<section><title>XML</title>
<content>XML stands for...</content>
</section>
<section><title>DTD</title>
<section><title>Definition</title>
<content>DTD stands for...</content>
</section>
<section><title>Usage</title>
<content>You can use DTD to...</content>
</section>
</section>
</section>



Using DTD

e DTD can be included in the XML source file

e <?xml version="1.0"7>

<bibliography>

</bibliography>

e DTD can be external

e <?xml version="1.0"7>

<bibliography>

</bibliography>
e <?xml version="1.0"7>

......

</html>



Annoyance: content grammar

e Consider this declaration:

<!IELEMENT pub-venue
( (name, address, month, year) |
(name, volume, number, year) )>

° “|” means ((Or”

* Syntactically legal, but won’t work
* Because of SGML (standard generalized markup
language) compatibility issues
* When looking at name, a parser would not know which
way to go without looking further ahead

* Requirement: content declaration must be
““deterministic” (i.e., no look-ahead required)

* Can we rewrite it into an equivalent, deterministic one?

* Also, you cannot nest mixed content declarations
* lllegal: <tELEMENT Section (title, (#PCDATAi)*, section*)>

18



Annoyance: element name clash

* Suppose we want to represent book titles and
section titles differently

* Book titles are pure text: (#PCDATA)

* Section titles can have formatting tags:
(#PCDATA[1|b/math)*

* But DTD only allows one title declaration!

 Workaround: rename as book-title and section-title?
* Not nice—why can’t we just infer a title’s context?



Annoyance: lack of type support

* Too few attribute types: string (CDATA), token (e.g.,
ID, IDREF), enumeration (e.g., (red|green|blue))

* What about integer, float, date, etc.?

* ID not typed

* No two elements can have the same id, even if they have
different types (e.g., book vs. section)

* Difficult to reuse complex structure definitions

 E.g.: already defined element E1 as (blah, bleh, foo?, bar*,
...); want to define E2 to have the same structure

in DTD provide a workaround

E.struct '(blah, bleh, foo?, bar*, ...)
« <IELEMENT EI %E.struct;>
e <IELEMENT E2 %E struct;>

* Something less “hacky’?

e Next Lecture: XML Schema! End of Lecture 21

20



|#f

i

"m
—
—
-
—
.
j—
p—
T
-

.

a

-
-]

I

Now for even
more structure support...

http://thenewsherald.com/content/articles/2012/11/10/entertainment/doc509deb919207¢2452179065.jpg

21



XML Schema

* A more powerful way of defining the structure and
constraining the contents of XML documents

* An XML Schema definition is itself an XML
document
 Typically stored as a standalone .xsd file
« XML (data) documents refer to external .xsd files
* W3C recommendation

* Unlike DTD, XML Schema is separate from the XML
specification



XML Schema definition (XSD)

<?xml version="1.0"7>

<xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema">

~ L Defines xs to be the namespace
described in the URL

\ Uses of xs: within the xs:schema element now
refer to tags from this namespace

</xs:schema>

23



24

XSD example

<xs:element name="book""> We are now defining an element named book
<xs:complexType> Declares a structure with child elements/attributes as opposed to just text)
<xs:sequence> Declares a sequence of child elements, like “(..., ..., ...)” in DTD
<xs:element name=""title" type="xs:string"/> A leaf element with string content
<xs:element name=""author" type='xs:string" . .
minOccurs="0" maxOccurs="unbounded"/> Like author* in DTD
<xs:element name=""publisher' type="xs:string" Like publisher? in DTD

minQOccurs="0" maxOccurs="1"/>

<xs:element name="year" type=""xs:integer" A leaf element with integer content
minOccurs="0" maxOccurs="1"/>

<xs:element ref="section" Like SeCtIOIl* in DTD; SGCthIl is defined 6|SeWheI’e
minOccurs="0" maxOccurs="unbounded' />

</xs:sequence>
<xs:attribute name="ISBN" type="xs:string" use="required'/>

Declares an attribute under book... and this attribute is required

<xs:attribute name="price" type="xs:decimal' use="optional"/>

</xs:complexType> This attribute has a decimal value, and it is optional

</xs:element>



25

Keys

<xs:element name="bibliography''>
<xs:complexType>... ... </xs:complexType>
<xs:key name="bookKey'>
<xs:selector xpath="./book" />
<xs:field xpath="@ISBN"'/>
</xs:key>

</xs:element>

* Under any bibliography, elements reachable by
selector ““./book” (i.e., book child elements) must have

unique values for field “@ISBN”’ (i.e., ISBN
attributes)

* In general, a key can consist of multiple fields
(multiple <xs:field> elements under <xs:key>)

e More on XPath in next lecture



Foreign keys

* Suppose content can reference books

. —" " R L)
<xs:element name="content"'> <xs:element name=""bibliography">

<xs:complexType mixed="true"> <xs:complexType>... ... </xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded"> <xs:key name="bookKey">
<xs:element name=""1i" type=''xs:string" /> <xs:selector xpath=""./book" />
<xs:element name="b" type=""xs:string" /> <xs:field xpath="@ISBN"/>
<xs:element name="book-ref"> </xs:key>
<xs:complexType> <xs:keyref name="bookForeignKey"
<xs:attribute name="ISBN" refer=""bookKey">
type=""xs:string"'/> <xs:selector xpath="".//book-ref" />
</xs:complexType> <xs:field xpath="@ISBN"/>
</xs:element> </xs:keyref>
</xs:choice> </xs:element>

</xs:complexType>
</xs:element>

* Under bibliography, for elements reachable by selector
“.//book-ret” (i.e., any book-ref underneath):
values of field “@ISBN”’ (i.e., ISBN attributes) must appear as
values of bookKey, the key referenced
* Make sure keyrefis declared in the same scope

26



Why use DTD or XML Schema?

* Benefits of not using them
* Unstructured data is easy to represent
* Overhead of validation is avoided

* Benefits of using them

e Serve as schema for the XML data
* Guards against errors
* Helps with processing

* Facilitate information exchange

* People can agree to use a common DTD or XML Schema to
exchange data (e.g., XHTML)



XML versus relational data

Relational data XML data

* Schemais always fixedin  * Well-formed XML does not
advance and difficult to require predefined, fixed
change schema

* Simple, flat table structures ¢ Nested structure;
ID/IDREF(S) permit arbitrary

graphs
* Ordering of rows and * Ordering forced by
columns is unimportant document format; may or

may not be important
* Exchange is problematic ¢ Designed for easy exchange

* “Native” support in all * Often implemented as an
serious commercial DBMS  ‘“add-on” on top of relations



Case study

* Design an XML document representing cities,
counties, and states
* For states, record name and capital (city)
* For counties, record name, area, and location (state)

* For cities, record name, population, and location (county
and state)

* Assume the following:
* Names of states are unique
* Names of counties are only unique within a state
* Names of cities are only unique within a county
* A city is always located in a single county
* A county is always located in a single state



A possible design

name xs:string
capital city id xs:string

name xs:string
area xs:decimal

id xs:string
name xs:string
population xs:integer

Declare stateKey in geo db with

Selector ./state ) ]
Field @name Declare countyInStateKey in state with

Selector ./county

Field @name Declare cityInCountyKey in county with

Selector ./city

Declare cityldKey in geo db with Field @name

Selector ./state/county/city
Field @id
Declare capitalCityldKeyRef'in geo_db referencing cityldKey, with
Selector ./state
Field @capital city id

30



Additional slides



32

XSD example cont’d

<xs:element name="section">
<xs:complexType>

<Xs:sequence> Another title definition; can be different

<xs:element name="title" type="xs:string"/> from book/title

<xs:element name="content" minOccurs="0" maxOccurs="1">

Declares mixed content

(text interspersed with structure below)

nded"> min/maxQOccurs can be
attached to compositors too

<xs:complexType mixed="true">
A CompOS'tQ){s!Uﬁ%ice minOccurs="0" maxOccurs="unb

XS:Sequence;<XS'element name="1i" type:"xs-string"/>
this one declares '

a list of alterngtiveggent name="b" type="xs:stri

like “(...|.. Jsd e hoice>
in DTD

/>
Like (#PCDATA|i|b)* in DTD
</xs:complexType>

</xs:element>

<xs:element ref="section" minOccurs="0" maxOccurs="unbounded"/>

_ Recursive definition
</xs:sequence>

</xs:complexType>

</xs:element>



XSD example cont’d

* To complete bib.xsd:
<xs:element name="bibliography">
<xs:complexType>
<xs:sequence>
<xs:element ref="book" minOccurs="“1" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

 To use bib.xsd in an XML document;:

<?xml version="1.0"?>
<bibliography xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="file:bib.xsd">
<book>... ... </book>
<book>... ... </book>

</bibliography>

33



Named types

* Define once:

<xs:complexType name="formatted TextType" mixed="true">

<xs:choice minOccurs="0" maxOccurs="unbounded'">

—1nsn —_n

1 type

<xs:element name="b" type="xs:string"/>

<xs:element name xs:string"/>

</xs:choice>

</xs:complexType>

e Use elsewhere in XSD:

<xs:element name="title" type="formatted TextType"/>

<xs:element name="content" type="formatted TextType"
minOccurs="0" maxOccurs="1"/>



Restrictions

—n

<xs:simpleType name="priceType'>

—_n

<xs:restriction base="xs:decimal'>
<xs:minlnclusive value="0.00"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="statusType">

—_n

<xs:restriction base="xs:string">
<xs:enumeration value="1in stock'/>
<xs:enumeration value="out of stock'/>

_n

<xs:enumeration value="out of print"/>
</xs:restriction>

</xs:simpleType>



