
4/17/17

1

Parallel Databases
and

Map Reduce
Introduction to Databases
CompSci 316 Spring 2017

Announcements (Wed., Apr. 17)

• Homework #4 due Monday, April 24, 11:55 pm
• No other extra credit problem

• Project Presentations
• A few project groups still have not signed up – please sign up

soon

• Google Cloud code
• Please redeem your code asap, by May 11

• Wednesday April 19
• Guest Lecture by Prof. Jun Yang
• OLAP, Data warehousing, Data mining
• Included in the final

2

Where are we now?
We learnt
üRelational Model, Query

Languages, and Database
Design
ü SQL
üRA
ü E/R diagram
üNormalization

üDBMS Internals
ü Storage
ü Indexing
üQuery Evaluation
ü External sort
ü Join Algorithms
üQuery Optimization

3

ü Transactions
ü Basic concepts and SQL
ü Concurrency control
ü Recovery

ü XML
ü DTD and XML schema
ü XPath and XQuery
ü Relational Mapping

Next
• Parallel DBMS
• Map Reduce
• Data Warehousing,

OLAP, mining
• Distributed DBMS
• NOSQL

Today

Wednesday

Next Monday

Parallel DBMS

4

Why Parallel Access To Data?

At 10 MB/s
1.2 days to scan

1,000 x parallel
1.5 minute to scan.

Parallelism:
divide a big problem

into many smaller ones
to be solved in parallel.

5

1 TB
Data

1 TB
Data

Parallel DBMS
• Parallelism is natural to DBMS processing

• Pipeline parallelism: many machines each doing one step
in a multi-step process.

• Data-partitioned parallelism: many machines doing the
same thing to different pieces of data.

• Both are natural in DBMS!

Pipeline
Any	

Sequential
Program

Any	
Sequential
Program

Partition SequentialSequential SequentialSequential Any
Sequential
Program

Any
Sequential
Program

outputs split N ways, inputs merge M ways

6

4/17/17

2

DBMS: The parallel Success Story

• DBMSs are the most successful application of
parallelism

• Teradata (1979), Tandem (1974, later acquired by HP),..
• Every major DBMS vendor has some parallel server

• Reasons for success:
• Bulk-processing (= partition parallelism)
• Natural pipelining
• Inexpensive hardware can do the trick
• Users/app-programmers don’t need to think in parallel

7

Some || Terminology

• Speed-Up
• More resources means

proportionally less time for
given amount of data.

• Scale-Up
• If resources increased in

proportion to increase in
data size, time is constant.

#CPUs
(degree of ||-ism)

#o
ps

/s
ec

.
(t

hr
ou

gh
pu

t)

Ideal:
linear speed-up

se
c.

/o
p

(r
es

po
ns

e
tim

e)

#CPUs + size of database
degree of ||-ism

Ideal:
linear scale-up

Ideal graphs

8

Some || Terminology

• Due to overhead in parallel processing

• Start-up cost

Starting the operation on many processor,
might need to distribute data

• Interference

Different processors may compete for the
same resources

• Skew

The slowest processor (e.g. with a huge
fraction of data) may become the
bottleneck

#CPUs
(degree of ||-ism)

#o
ps

/s
ec

.
(t

hr
ou

gh
pu

t)

#CPUs + size of database
degree of ||-ism

#o
ps

/s
ec

(r
es

po
ns

e
tim

e)

In practice

Ideal:
linear speed-up

Ideal:
linear scale-up

Actual: sub-linear
speed-up

Actual: sub-linear
scale-up

9

Architecture for Parallel DBMS

• Units: a collection of processors
• assume always have local cache
• may or may not have local memory or disk (next)

• A communication facility to pass information
among processors

• a shared bus or a switch

• Among different computing units
• Whether memory is shared
• Whether disk is shared

10

Shared Memory
11

shared
memory

e.g. SMP Server

• Easy to program

• Expensive to
build

• Low
communication
overhead: shared
memory

• Difficult to scaleup
(memory
contention)

Interconnection Network

P P P

D D D

Global Shared Memory

Shared Nothing
12

local
memory
and disk

no two
CPU can
access
the same
storage area

all
communicat
ion
through a
network
connection

Interconnection Network

P P P

M

D

M

D

M

D

• Hard to
program and
design parallel
algos

• Cheap to build

• Easy to
scaleup and
speedup

• Considered to
be the best
architecture

e.g. Greenplum

4/17/17

3

Shared Disk
13

local
memory

shared disk

P P P

M

D

M

D

M

D

Interconnection Network

e.g. ORACLE RAC

• Trade-off but still
interference like
shared-memory
(contention of
memory and nw
bandwidth)

Different Types of DBMS Parallelism
• Intra-operator parallelism

• get all machines working to compute a given
operation (scan, sort, join)

• OLAP (decision support)

• Inter-operator parallelism
• each operator may run concurrently on a

different site (exploits pipelining)
• For both OLAP and OLTP (transactiond)

• Inter-query parallelism
• different queries run on different sites
• For OLTP

• We’ll focus on intra-operator parallelism

⨝

𝝲

⨝

𝝲

⨝

𝝲

⨝

𝝲

14

Ack:
Slide by Prof. Dan Suciu

Data Partitioning
Horizontally Partitioning a table (why horizontal?):
Range-partition Hash-partition Block-partition

or Round Robin

Shared disk and memory less sensitive to partitioning,
Shared nothing benefits from "good" partitioning

A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z

• Good for equijoins,
range queries, group-by
• Can lead to data skew

• Good for equijoins
• But only if hashed

on that attribute
• Can lead to data

skew

• Send i-th tuple to
i-mod-n processor

• Good to spread
load

• Good when the
entire relation is
accessed

15

Example

• R(Key, A, B)

• Can Block-partition be skewed?
• no, uniform

• Can Hash-partition be skewed?
• on the key: uniform with a good hash function
• on A: may be skewed,

• e.g. when all tuples have the same A-value

16

Parallelizing Sequential
Evaluation Code

• “Streams” from different disks or the output of
other operators

• are “merged” as needed as input to some operator
• are “split” as needed for subsequent parallel processing

• Different Split and merge operations appear in
addition to relational operators

• No fixed formula for conversion
• Next: parallelizing individual operations

17

Parallel Scans

• Scan in parallel, and merge.
• Selection may not require all sites for range or hash

partitioning
• but may lead to skew
• Suppose sA = 10R and partitioned according to A
• Then all tuples in the same partition/processor

• Indexes can be built at each partition

18

4/17/17

4

Parallel Sorting

Idea:
• Scan in parallel, and range-partition as you go

• e.g. salary between 10 to 210, #processors = 20
• salary in first processor: 10-20, second: 21-30, third: 31-40, ….

• As tuples come in, begin “local” sorting on each
• Resulting data is sorted, and range-partitioned
• Visit the processors in order to get a full sorted order
• Problem: skew!
• Solution: “sample” the data at start to determine partition

points.

19

Parallel Joins

• Need to send the tuples that will join to the same
machine

• also for GROUP-BY

• Nested loop:
• Each outer tuple must be compared with each inner

tuple that might join
• Easy for range partitioning on join cols, hard otherwise

• Sort-Merge:
• Sorting gives range-partitioning
• Merging partitioned tables is local

20

Parallel Hash Join

• In first phase, partitions get distributed to
different sites:

• A good hash function automatically distributes work
evenly

• Do second phase at each site.
• Almost always the winner for equi-join

Original Relations
(R then S)

OUTPUT

2

B main memory buffers DiskDisk

INPUT
1

hash
function

h
B-1

Partitions

1
2

B-1
. . .

Ph
as

e
1

21

Dataflow Network for parallel Join

• Good use of split/merge makes it easier to build
parallel versions of sequential join code.

22

Jim Gray & Gordon Bell: VLDB 95 Parallel Database Systems Survey

Parallel Aggregates

A...E F...J K...N O...S T...Z

A Table

Count Count Count Count Count

Count

• For each aggregate function, need a decomposition:
• count(S) = S count(s(i)), ditto for sum()
• avg(S) = (S sum(s(i))) / S count(s(i))
• and so on...

• For group-by:
• Sub-aggregate groups close to the source.
• Pass each sub-aggregate to its group’s site.

• Chosen via a hash fn.

23

Which SQL aggregate operators are not
good for parallel execution?

• Why?
• Trivial counter-example:

• Table partitioned with local secondary index at
two nodes

• Range query: all of node 1 and 1% of node 2.
• Node 1 should do a scan of its partition.
• Node 2 should use secondary index.

Best serial plan may not be best ||

N..Z

Table
Scan

A..M

Index
Scan

24

4/17/17

5

Map Reduce

25

Slides by Junghoon Kang

Big Data
it cannot be stored

in one machine

store the data sets
on multiple machines

e.g. Google File System
SOSP 2003

it cannot be processed in
one machine

parallelize computation
on multiple machines

e.g. MapReduce
OSDI 2004

Where does Google use MapReduce?

MapReduce

Input

Output

● crawled documents
● web request logs

● inverted indices
● graph structure of web documents
● summaries of the number of pages

crawled per host
● the set of most frequent queries in a

day

27

What is MapReduce?
It is a programming model

that processes large data by:
apply a function to each logical record in the input (map)

categorize and combine the intermediate results
into summary values (reduce)

28

Google’s MapReduce is inspired by
map and reduce functions
in functional programming

languages.

For example,
in Scala functional

programming language,

scala> val lst = List(1,2,3,4,5)

scala> lst.map(x => x + 1)

res0: List[Int] = List(2,3,4,5,6)

4/17/17

6

For example,
in Scala functional

programming language,

scala> val lst = List(1,2,3,4,5)

scala> lst.reduce((a, b) => a + b)

res0: Int = 15

Ok, it makes sense
in one machine.

Then, how does Google extend
the functional idea

to multiple machines
in order to

process large data?

Understanding MapReduce
(by example)

I am a class president

33

An English teacher asks you:
“Could you count the number of occurrences of

each word in this book?”

34

Um… Ok...

This image cannot currently be displayed.

35

Let’s divide the workload among
classmates. map

36

4/17/17

7

And let few combine the
intermediate results.

reduce

I will collect
from A ~ G

H ~ Q R ~ Z

37

A:6
B: 2
….
G: 12

H:8
….
Q: 1

R:6
….
Z: 2A:5

B:7
….
G:2

A: 11
B: 9
….
G:14

Why did MapReduce
become so popular?

38

Is it because Google uses it?

39

Distributed Computation
Before MapReduce

Things to consider:

• how to divide the workload among multiple machines?

• how to distribute data and program to other machines?

• how to schedule tasks?

• what happens if a task fails while running?

• … and … and ...

40

Distributed Computation
After MapReduce

Things to consider:

• how to write Map function?

• how to write Reduce function?

41

MapReduce lowered the
knowledge barrier

in distributed computation.

Developers needed
before MapReduce

Developers needed
after MapReduce

42

4/17/17

8

Map-Reduce Steps

• Input is typically (key, value) pairs
• but could be objects of any type

• Map and Reduce are performed by a number of processes
• physically located in some processors

43

same key

Map ReduceShuffle
Input
key-value pairs

output
listssort by key

Map-Reduce Steps

1. Read Data
2. Map – extract some info of

interest in (key, value) form
3. Shuffle and sort

• send same keys to the same
reduce process

44

same key

Map ReduceShuffle
Input
key-value pairs

output
listssort by key

4. Reduce
– operate on the values of the same

key
– e.g. transform, aggregate,

summarize, filter

5. Output the results (key, final-result)

Simple Example: Map-Reduce

• Word counting
• Inverted indexes

Ack:
Slide by Prof. Shivnath Babu

45

Map Function

• Each map process works on a chunk of data
• Input: (input-key, value)
• Output: (intermediate-key, value) -- may not be the same as input key value
• Example: list all doc ids containing a word

• output of map (word, docid) – emits each such pair
• word is key, docid is value
• duplicate elimination can be done at the reduce phase

46

same key

Map ReduceShuffle
Input
key-value pairs

output
listssort by key

Reduce Function

• Input: (intermediate-key, list-of-values-for-this-key) – list can include duplicates
• each map process can leave its output in the local disk, reduce process can retrieve

its portion

• Output: (output-key, final-value)

• Example: list all doc ids containing a word
• output will be a list of (word, [doc-id1, doc-id5, ….])
• if the count is needed, reduce counts #docs, output will be a list of (word, count)

47

same key

Map ReduceShuffle
Input
key-value pairs

output
listssort by key

Key Players in MapReduce

• A Map-Reduce “Job”
• e.g. count the words in all docs
• complex queries can have multiple MR jobs

• Map or Reduce “Tasks”
• A group of map or reduce “functions”
• scheduled on a single “worker”

• Worker
• a process that executes one task at a time
• one per processor, so 4-8 per machine
• Follows whatever the Master asks to do

• One Master
● coordinates many workers.
● assigns a task to each worker 48

4/17/17

9

Fault Tolerance

Although the probability of a machine failure is low,

the probability of a machine failing among thousands of
machines is common.

49

How does MapReduce
handle machine failures?

Worker Failure
● The master sends heartbeat to each worker node.

● If a worker node fails, the master reschedules the tasks
handled by the worker.

Master Failure

● The whole MapReduce job gets restarted through a
different master.

50

Examples

51

Example problem: Parallel DBMS
R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N =
3 machines.

Pick an efficient plan that leverages the parallelism as much as possible.

• SELECT a, max(b) as topb
• FROM R
• WHERE a > 0
• GROUP BY a

52

in class

