
COMPSCI 330: Design and Analysis of Algorithms 1/14/2016

Introduction
Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Tianyu Wang

1 Overview

Welcome to Computer Science 330. This lecture is an introduction to algorithms. It covers asymptotic
analysis and recurrence relations. We demonstrate these principles with simple algorithms such as Fibonacci
numbers, searching, and sorting.1

2 Calculating Fibonacci Numbers

Fibonacci numbers can be defined inductively. The nth Fibonacci number, F(n) is

F(n) =


0 if n = 0
1 if n = 1
F(n−1)+F(n−2) otherwise.

(1)

It is easy to write an algorithm based on this definition, however as we will see, this algorithm is very slow.

Algorithm 1 Calculate the nth Fibonacci number
1: function FIB(n)
2: if n = 0 then
3: return 0
4: if n = 1 then
5: return 1
6: else
7: return FIB(n−1) + FIB(n−2)

What is the recurrence for the running time of Algorithm 1? It is

T (n) = T (n−1)+T (n−2)+O(1). (2)

Unfortunately, the solution to Equation 2 is exponential. The reason is that T (n)= T (n−1)+T (n−2)≥
2T (n−2)≥ 22T (n−4)≥ ·· · ≥ 2

n
2 T (0) = 2

n
2 . We can also see its computation tree in Figure 1 and detailed

analysis in chapter 27.1 of CLRS, 3rd Edition. We often say that exponential running time is bad, but why
is this the case? According to Moore’s Law, the speed of computers roughly doubles each year. That means
that if finding the kth Fibonacci number takes 1 hour this year, it will take 1 hour to find the k+1th Fibonacci
number next year. If we want to be able to calculate the k+ 100th Fibonacci number in 1 hour, we would
need to wait 100 years! This means that exponential running times are bad, even though computers get much
faster each year.

1Most of the material in this note is from a previous note by Samuel Haney for this class in Fall 2014.

1-1

Figure 1: Computation tree of Algorithm 1 which is a recursive way to compute Fibonacci number. This
algorithm is not efficient because some subproblems are unnecessarily computed repetitively.

Let’s see if we can improve the running time of calculating the nth Fibonacci number by using an
iterative algorithm instead of recursion.

Algorithm 2 Calculate the nth Fibonacci number iteratively
1: function FIB-ITER(n)
2: F[0]← 0
3: F[1]← 1
4: for i← 2 to n do
5: F[i]← F[i−2] + F[i−1]
6: return F[n]

The running time of Algorithm 2 appears to be much better than Algorithm 1 (see its computation tree
in Figure 2). Naively, we might think the recurrence relation is

T (n)≈ n. (3)

However, this assumes the we can add any two numbers in one unit of time. This is a bad assumption!
In fact, the time it takes to add n-bit numbers depends on n. The size of the nth Fibonacci number is on the
order of n bits, so these additions take a very long time. If we assume that adding two n bit numbers takes n
time, we get a new recurrence:

T (n) =
n

∑
i=2

i =
n(n+1)

2
−1. (4)

1-2

n

n-1

n-2

n-3

Figure 2: Computation tree of Algorithm 2 which is a iterative way to compute Fibonacci number. This
algorithm is efficient because each subproblem is only computed once.

While Equation 3 is linear, Equation 4 is quadratic since the n2 term dominates. This running time is still
much better than Algorithm 1. This brings us to our next topic: what does it mean to say that the n2 term
dominates?

3 Asymptotic Analysis

Definition 1. For functions f and g both defined on the natural numbers, we say that f is O(g) (f = O(g))
if ∃N,c ∈ N, c > 1 such that ∀n > N, f (n)≤ c ·g(n).

Example 1. Let f (n) = 2n2 +2n+1 and g(n) = n2. We would like to show that f = O(g). For this, we set
c = 3. In order to satisfy Definition 1, we must have

2n2 +2n+1 < 3n2

2n+1 < n2. (5)

Equation 5 is satisfied for n > 3, so we set N = 3.

Example 2. Let f (n) = n
1000000 and g(n) = logn. For small values of n, f (n)� g(n). However, as n grows

to very large numbers, f will dominate g. Therefore, it is not true that f = O(g), even though it appears that
way for small numbers.

Definition 2. For functions f and g both defined on the natural numbers, we say that f is Ω(g) (f = Ω(g))
if ∃N,c ∈ N, c > 1 such that ∀n > N, c · f (n)≥ g(n).

In Example 2, f = Ω(g).

Definition 3. For functions f and g both defined on the natural numbers, we say that f is Θ(g) (f = Θ(g))
if f = O(g) and f = Ω(g).

Example . Let f (n) = n+1000000 and g(n) = 2n. Then f is Θ(g).

1-3

Definition 4. For functions f and g both defined on the natural numbers, we say that f is o(g) (f = o(g)) if
f = O(g) and f 6= Θ(g).

In Example 2, g is o(f).

Definition 5. For functions f and g both defined on the natural numbers, we say that f is ω(g) (f = ω(g))
if f = Ω(g) and f 6= Θ(g).

4 Euclid’s Algorithm

In this section, we give one of the oldest algorithms that is still used today: Euclid’s Algorithm, for finding
the gcd of a pair of numbers.

Algorithm 3 Euclid
1: function GCD(a,b)
2: if b = 0 then . Assume WLOG that a > b. Otherwise the names can be reversed
3: return a
4: else
5: return GCD(b,a mod b)

Proof: Let a = bp+q. If α is a common divisor of a and b, it is also a divisor of a−bp which is q, so α is
a common divisor of b and q. If β is a common divisor of b and q, it is also a divisor of bp+q which is a,
so β is a common divisor of a and b. Therefore, a number is a common divisor of a and b iff it is a common
divisor of b and q, and then GCD(a,b) = GCD(b,a mod b).

4.1 Worst case analysis of Euclid’s algorithm

Notice that the algorithm stops when the second input becomes 1. Denote by (ai,bi) pairs of a and b at the
i-th last iteration. Note that bi = ai+1 mod bi+1 or ai+1 = kbi+1 +bi with k≥ 1 and bi < bi+1. Note that the
worst case runtime happens when k = 1. Otherwise, the values of a and b decrease faster and the algorithm
terminates faster. This gives us at least (in terms of term-wise magnitude) the Fibonacci sequence. In other
words, the worst case happens when the two inputs are no less than two consecutive Fibonacci numbers, or
simply bi ≥ Fi−1 where Fm is the m-th Fibonacci number. On the other hand, recall from Section 2 that the
Fibonacci sequence increases exponentially in magnitude. Therefore, Euclid algorithm takes O(logb) time
to terminate. So the worst case time complexity is O(logb) if we assume that the mod operation takes
constant time.

5 Searching

In this section, we analyze a two searching algorithms, linear search and binary search. Throughout this
section, we use k as the key we are searching for.

5.1 Linear Search

The algorithm for linear search is given below.

1-4

Algorithm 4 Linear search
1: function LIN-SEARCH(A,k)
2: for i← 1 to n do
3: if A[i] = k then
4: return true
5: return false

Algorithm 5 Linear search with recursion
1: function LIN-SEARCH-RECURSIVE(A[1 . . .n],k)
2: if A[1] = k then
3: return true
4: if A is empty then
5: return false
6: else
7: return LIN-SEARCH-RECURSIVE(A[2 . . .n],k) . Note that A[2 . . .n] is empty if n = 1

We would like to write a recursion relation for the running time, and this is easier if we rewrite the
algorithm recursively.

We can now write a recurrence relation for the running time.

T (n) = T (n−1)+2 = T (n−1)+O(1) (6)

If we expand out Equation 6, we get

T (n) = T (n−1)+O(1)

= T (n−2)+O(1)+O(1)
...

= O(1)+ · · ·+O(1) (n times)

= O(n).

We now give a more rigorous proof that T (n) = O(n).

Proof. Proof is by induction. The base case T (1) = O(1) holds. Our inductive hypothesis is

T (n−1)≤ c · (n−1),

and we must show
T (n)≤ c ·n.

We choose c = 2 which gives

T (n)≤ c(n−1)+2 = 2(n−1)+2 = 2n = cn.

1-5

Algorithm 6 Binary search
1: function BIN-SEARCH(A[1 . . .n],k)
2: if A is empty then
3: return false
4: if k = A[n/2] then
5: return true
6: if k > A[n/2] then
7: return BIN-SEARCH(A[n/2+1, . . . ,n],k)
8: if k < A[n/2] then
9: return BIN-SEARCH(A[1, . . . ,n/2−1],k)

5.2 Binary Search

It is possible to search a sorted list much faster than linear time. We present an algorithm that accomplishes
this.

The recurrence for Algorithm 6 is

T (n) = T (n/2)+O(1).

We give an inductive proof that the solution is T (n) = O(logn).

Proof. Proof is by induction. The base case T (1) = O(1) holds. Our inductive hypothesis is

T (n/2)≤ c log2(n/2),

and we must show
T (n)≤ c log2(n).

From our recurrence and inductive hypothesis we have

T (n)≤ c log2(n/2)+ c

= c(log2(n/2)+1)

= c(log2 n− log2 2+1)

= c log2 n

= O(logn)

Therefore, Algorithm 6 takes O(logn) time. However, in order to give the proof, we first needed to guess
that the correct answer was logn. How did we do this? We can think about the size of the array in each of
our recursive calls. Before the first call, the size is n. After the first call the size is n/2, then n/4, then n/8,
and so on. In the kth level of recursion, the size of the array is n

2k . Our algorithm terminates when the array
has only one element remaining. Solving for k in n

2k = 1 gives k = log2 n, which is therefore the number of
levels of recursion.

1-6

	Overview
	Calculating Fibonacci Numbers
	Asymptotic Analysis
	Euclid's Algorithm
	Worst case analysis of Euclid's algorithm

	Searching
	Linear Search
	Binary Search

