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1 Fundamentals of Probability

1.1 Random Variables and Events

A random variable X is one whose value is non-deterministic. For example,
suppose we flip a coin and set X = 1 if we get heads, and X = 0 if we get tails.
Then, X is a random variable since its value is not known prior to the flip.

The set of values X can take and their associated probabilities is referred
to as a probabilistic distribution. Variables can be discrete (e.g. the result of a
die) or continuous (e.g. the distance between two objects). For this course, we
focus on discrete distributions.

We can define an event E as something that may or may not happen, and
then discuss the probability it happens as Pr[E]. When we discuss random
variables, we may describe the probability they take on certain values using
this notation. For example, Pr[X = x] signifies the probability of the event
”X = x”.

We can define events which are functions of other events as well. For ex-
ample, given two events A,B the event where both A and B happen can be
written as A ∩ B (the intersection, or logical AND). The event where at least
one of A,B happens is A∪B (the union, or logical OR). We can also define the
complement of an event, AC . AC is the event where A does not happen.

Note that:

• Pr[AC ] = 1− Pr[A]

• (A ∩B)C = AC ∪BC

• (A ∪B)C = AC ∩BC

• Pr[A ∪ B] ≤ Pr[A] + Pr[B] (this is the union bound, and generalized to
multiple events)

• Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B] (can be proven pictorially via
Venn diagram)

We can also define events conditionally on other events already having oc-
curred. For example, given that we rolled an even number on a die, what’s the
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probability we rolled a 6? The conditional probability of B given A is written

as Pr[B|A]. More formally, Pr[B|A] = Pr[B∩A]
Pr[A] .

Some conditional probabilities can be very cleanly defined in terms of each
other. Note that Pr[B|A]Pr[A] == Pr[A ∩ B] = Pr[A|B]Pr[B]. Then,

Pr[B|A] = Pr[A|B]Pr[B]
Pr[A] . This is Bayes’ rule. For example, if we know the

probability a drug-using individual tests positively for drugs, if a test has false
positives determining the probability someone who tests positive has actually
taken drugs isn’t easy. However, if we also know the probability an individual
tests positive overall and the probability an individual has taken drugs, Bayes’
rule lets us relate the two quantities easily.

1.2 Mutual Exclusion and Independence

Two events are said to be mutually exclusive if one happening means the other
cannot happen. For example, rolling a 1 and rolling an even number on a die
are mutually exclusive events. Formally, A and B are mutually exclusive if
Pr[A ∩B] = 0.

Two events are independent if knowing whether one happened or not does
not give us any additional knowledge as to whether the other happened or not.
For example, while knowing that I rolled an even number on a die gives us
more info about whether I rolled a 6 or not, knowing that I flipped a coin
and got heads tells me nothing about whether I rolled a 6 or not. Formally,
A and B are independent if Pr[A|B] = Pr[A] or equivalently, Pr[A ∩ B] =
Pr[A]Pr[B]. The latter equation extends to multiple independent events. That
is, Pr[E1 ∩ E2...En] =

∏
i Pr[Ei] if all Ei are independent. In general, two

events which have no effect on each other are independent. So, if we have many
events we know occur independently, we can calculate the probability of the
joint set of events occurring by just multiplying each of the individual events’
probabilities of occurring.

1.3 Expected Values

For a random variable X, the expected value can be denoted as E[X]. The
expected value can be thought of as the average outcome. Formally, E[X] =∑

x Pr[X = x] ∗ x. For example, if I flip a fair coin and set X = 1 if the
coin gets heads and X = 0 otherwise, E[X] = .5. We can also write expected
values conditionally - for example, the expected value of a die roll given I got an
even number. The expected value of X conditioned on A happening is E[X|A].
For some set of outcomes of some event E1...En and some associated random
variable, E[X] =

∑
i Pr[Ei]E[X|Ei].

Some random variables can be written as the sum of other random variables.
For example, suppose I flip n coins, and denote X1, X2...Xn to be 1 if the ith
coin lands heads and 0 if it lands tails. Suppose X is a random variable which
counts the number of heads I flip. I can write X = X1 + X2...Xn. When a
random variable is the sum of other random variables, its expected value is the
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sum of their expected values. i.e. X =
∑

iXi → E[X] =
∑

iE[Xi]. This is
known as linearity of expectation. It holds even when the Xi are dependent on
each other, making it a very strong property.

2 The Geometric Distribution

Suppose we flip a coin that lands heads with probability p and tails otherwise,
until it lands heads. How many flips will this take? If X is the number of flips
it takes, then in order for X to equal i, we need to flip i−1 tails (if we flip heads
before the ith flip, we stop) and then 1 heads. So, Pr[X = i] = (1− p)i−1p for
all positive integers i. A random variable with this distribution is said to be
geometrically distributed - the set of probabilities is referred to as a geometric
distribution. Formally, X ∼ Geo(p).

The geometric distribution is useful in that it lets us predict how many times
we may have to repeat some trial until it succeeds. For example, in randomized
algorithms we might run a while loop until some condition is. If the chance of
that condition being met on each iteration is constant, the number of iterations
the while loop takes is geometrically distributed.

Note that Pr[X > b] = (1− p)b (we make more than b flips if the first b flips
produce tails).

The expected value of the geometric distribution is 1
p . Intuitively this makes

sense, but we can also prove it quite simply. With probability p, on the first flip,
we get heads and so X = 1. Otherwise, if we flip tails, the number of remaining
flips is still E[X], so now X’s conditional expected value is (1 + E[X])). In
other words, E[X] = Pr[X = 1] ∗ E[X|X = 1] + Pr[X > 1] ∗ E[X|X > 1] =
p ∗ 1 + (1− p)(1 + E[X]). This is solved by E[X] = 1

p .

3 Probability Problems

3.1 Coupon Collector

We’re drawing coupons from a machine, and there are n types of coupons. In
one draw, a coupon is picked at random and each type of coupon has the same
probability to be picked. What is the expected number of draws to get all n
types of coupons?

Let Xi be the random variable representing the number of draws to get the
i the distinct coupon after we have got (i − 1) distinct coupons. We have Xi

follows a geometric distribution and the probability of success for each trial is:

pi =
n− i+ 1

n

The expectation of Xi is

E[Xi] =
1

pi
=

n

n− i+ 1
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.
Let X be the number of draws to get all coupons. Then we have

X = X1 +X2 + . . . Xn

E[X] =

n∑
i=1

E[Xi]

E[X] = n[
1

1
+

1

2
. . .

1

n
] ∈ Θ(n log n)

3.2 Birthday Paradox

There are k people and each person has a random birthday from n days. How
large should k be such that the chance that two people have the same birthday
is at least α

Let X be the event that every person has a distinct birthday. The ith person
has (n− i+1) options to have a distinct birthday. Thus, the probability to have
a distinct birthday is n−i+1

n . Then:

Pr[X] =
n

n

n− 1

n

n− 2

n
. . .

n− k + 1

n

Pr[X] = 1(1− 1

n
)(1− 2

n
) . . . (1− k − 1

n
)

Calculus shows us e−x ≈ 1− x for small x. Then:

Pr[X] ≈ e−(0+ 1
n+ 2

n ···+
k−1
n )

Pr[X] ≈ e−
k(k−1)

n

Then the minimum k needed is roughly that which solves

e−
k(k−1)

n = 1− α

.

3.3 Balls in Bins

Suppose we have n balls and m bins, and we toss the balls uniformly at random
into the bins. This is called a balls and bins process, and is a popular model
in practice. For example, hashing algorithms can use a balls and bins process
to analyze collisions. For this section, let Xi be the number of balls in ith bin
after all balls are thrown.

3.3.1 Balls to fill all bins

How large should n be before all bins have a ball in expectation? This is a
restatement of the coupon collector problem, so we get n = Θ(m log m).
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3.3.2 E[Xi]

What is E[Xi]? Note that since all bins are equivalent from the perspective of
throwing balls, E[Xi] is the same for all i. Then,

m∑
i=1

E[Xi] = n

and thus
E[Xi] =

n

m
.

3.3.3 Most filled bin

How large is the most filled bin in expectation? That is, what is E[maxiXi]?
This problem is particularly interesting for hashing in that it asks what’s the
expected worst case runtime of checking a bucket in the hashtable.

For simplicity, assume there are also n bins (that is, m = n). In addition,
we will only try to upper bound the expected value.

The probability a fixed bin has more than k balls is the probability that
some set of k balls all landed in this bin. There are

(
n
k

)
such sets, so by union

bound, this is

Pr(Xi ≥ k) ≤
(
n

k

)
(

1

n
)k

The operation
(
n
k

)
is the choose operation. It computes the number of subsets

of size k we can choose from a set of size n.(
n

k

)
=

n!

k!(n− k)!

Where i! = 1 ∗ 2 ∗ . . . i.
A useful inequality known as Stirling’s approximation bounds

(
n
k

)
(
n

k
)k ≤

(
n

k

)
≤ (

en

k
)k

Then:

Pr(Xi ≥ k) ≤ (
en

k
)k(

1

n
)k = (

e

k
)k

.
Then, maxiXi is at least k if any Xi is at least k:

Pr(maxiXi ≥ k) = Pr(∪ni=1Xi ≥ k)

By union bound:

Pr(maxiXi ≥ k) ≤ n(
e

k
)k
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.
We know that maxiXi ≤ n. Then, we can upper bound E[maxiXi] as

follows:

E[maxiXi] ≤ k ∗ Pr(maxiXi < k) + n ∗ Pr(maxiXi ≥ k) ≤ n2(
e

k
)k + k

The first inequality is arrived at by taking the expected value formula and
increasing all values less than k to k, and all other values to n. The second
is arrived at by bounding the first probability by 1, and the second as shown
above.

We will then choose k in order to remove the first half of the sum. Asymp-
totically, this will be the same as if we had optimized for k

n2(
e

k
)k ≤ 1

(
e

k
)k ≤ 1

n2

(
kk

ek
) ≥ n2

kk ≈ poly(n)

k log k = O(log n)

.
This happens to be solved by k = O( log n

log log n ).

k log k =
log n

log log n
∗ log(

log n

log log n
)

=
log n

log log n
∗ (log log n− log log logn)

.
log log logn is vanishingly small, so:

k log k = Θ(
log n

log log n
∗ log log n) = Θ(log n)

.
Then, since n2( e

k )k ≤ 1:

E[maxiXi] ≤ k∗Pr(maxiXi ≤ k)+n∗Pr(maxiXi ≥ k) ≤ n2(
e

k
)k+k = 1+O(

log n

log log n
) = O(

log n

log log n
)
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