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High-level Overview
Traditional ER problem: resolve authors in a publications database - discover 
which authors refer to the same underlying author entity.

Solution: Rather than individual-to-individual mappings and attribute-to-attribute 
comparisons, use cluster-to-cluster mappings and consider relationships between 
entity references to resolve matchings

Results: Improvement over baseline approaches, marginal improvement on 
LDA-ER but massive runtime improvement



Introduction



Introduction
References that have similar attributes are more likely to be the same entity 
if their references have high overlap

Example:

1. W. Wang, C.Chen, A.Ansari, “A mouse immunity model”
2. W.Wang, A.Ansari, “A better mouse..”
3. L. Li, C.Chen, W.Wang, “Measuring protein-bound fluxetine”
4. W. W. Wang, A. Ansari, “Autoimmunity in biliary cirrhosis”



Introduction



Problem Formulation
1. Set of references R where each reference r has attributes r.A1, r.A2, r.A3, etc.

2. Corresponds to set of unknown entities E = {e1, e2, … en}.

3. References co-occur with each other by a set of hyper-edges H, which may 
also have attributes H.A1…

4. r.H is set of hyper edges a reference belongs to. Is {0, 1} in this paper.



Problem Formulation

Reference graph (start) Entity graph (end)



Baseline Approaches
1. Attribute-based Entity Resolution

a. Fellegi Sunter
b. Sophisticated string similarity metrics (Jaro-Winkler, Levenstein, etc)

2. Naive Relational Entity Resolution

a. Treat related references as additional attributes
b. Define a hyper-edge similarity measure: best pair-wise attribute match between hyper-edges
c. Take a simple linear combination of attributes and hyper-edge similarities
d. Improvement over attribute-based, but can still cause errors (see Slide 5)



Collective Entity Resolution
Key idea: Resolutions not made independently, resolution decisions affects other 
resolutions via hyper-edges.

Solution: Relational (Greedy, Agglomerative) clustering algorithm.

1. References placed in clusters representing underlying entity.
2. Iteratively pick the highest similarity clusters in queue above a threshold

a. Use both attribute and reference graph in similarity

3. Merge clusters, remove clusters from queue 
4. Recalculate similarity to others using merged cluster
5. Update all neighbor similarities (those that share hyper edges)
6. Repeat until no similarities above threshold.



Collective Entity Resolution
First Step

Define a similarity function

A simple linear combination between attribute similarity and reference similarity. 
But what is reference similarity? 

 



Collective Entity Resolution
Reference Similarity - compare references, handle ambiguities, and enforce 
constraints

1. Common Neighbors
2. Jaccard Coefficient
3. Adar Similarity
4. Using Ambiguities in Data
5. Negative Constraints 



Neighborhood Similarity Measures
Common Neighbors

The greater the number of common entities, the higher the possibility that 
the references refer to the same entity

Set Model:

Bag Model:

If we want to take into account the frequencies of co-references:



Neighborhood Similarity Measures
Jaccard Coefficient

For large values of K, Common Neighbors can ‘overfit’ certain hyper-edges. 
Define similarity in terms of relative size of neighborhoods.



Neighborhood Similarity Measures
Adar Similarity

Consider the significance of being similar to another cluster. Make ‘popular’ 
clusters less impactful than unique clusters.

Jaccard is a special case of Adar when all clusters have the same value of u.



Neighborhood Similarity Measures
Adar Similarity with Ambiguity Estimate

Define the uniqueness in terms of how ambiguous (common) a name is.

Amb(r.Name) is the proportion of references with r.Name divided by the size of all references. 

Can do better if we have more attributes - can estimate ambiguity of last name by counting 
number of different first names observed for it. 



Negative Constraints from Relationships
Handle hard negative constraints by setting similarity of two clusters to zero 
if any negative constraints are violated.

In many relational domains, two references appearing in the same hyper-edge 
cannot refer to the same entity.

Example: C. Faloutsos, M. Faloutsos, P. Faloutsos - must be different entities if in 
same hyper-edge (paper).



Relational Clustering Algorithm



Blocking
Any blocking technique can be used as a black box. 

Paper implementation:

1. Make a single pass, assign reference to bucket(s) using an attribute similarity 
measure.

2. Each bucket maintains a representative which an incoming reference is 
scored against.

3. Any reference scoring above a threshold on sim(r, rep) is put into the bucket.



Bootstrapping
If each reference started in a distinct cluster, we could only use 
attribute-similarity for merges, which may be very inaccurate.

Bootstrap clusters with a high precision pass that only merges exact matches.

Use naive relational approach.

1. Blocking
2. Determine if pair(c1, c2) is a bootstrap candidate

a. Exact attribute matches with low ambiguity
b. Ambiguous reference matches with high overlap in hyper-edges 

3. Put all bootstrap candidates into clusters



Merging Clusters and Updating Similarities
Maintain a series of indexes for each cluster for fast merging and updating

1. Maintain list of similar clusters for each cluster
2. Track all neighboring clusters
3. Maintain list to all entries involving cluster in priority queue

As two clusters merge, use 1, 2, 3 to quickly merge and create merged indexes

Updates are performed using indexes



Complexity
Blocking

Worst Case: Bootstrapping does not reduce the number of clusters. Therefore, every pair of references 
within a bucket must be compared.

Suppose n references are assigned to b buckets, with each reference being assigned to a 
maximum of f buckets.

Comparisons per Bucket: O((nf/b)2)
Total Number of Comparisons: O(n2f2/b)

Assumptions:
1. Number of buckets is proportional to the number of references (b is O(n)).
2. f is a small constant independent of n.

The total number of computations is around O(n). A bad bucketing algorithm would assign O(n) 
references to each bucket leading to a total of O(n2) comparisons.



Complexity
Iteration

Time taken for each iteration of the algorithm: Assume that for each bucket that is 
affected by a merge operation, all O((nf/b)2) comparisons per buckets have to be redone. 

Definition: Two buckets are connected if any hyper-edge connects two references in the two 
buckets.

If any bucket is connected to k other buckets, each merge operation would lead to 
O(k(nf/b)2) update/insert operations. REMINDER: Still reduces to O(k) because of our 
previous assumptions about f and b.

Binary-heap implementation for the priority queue (pq): Assuming q is the number of 
entries in the pq, the insert/update and extract-max operations take O(log q) time.

Total cost of each iteration of the algorithm is O(k log q)



Complexity
Total number of Iterations

Worst case: the algorithm may exhaust the pq before the similarity falls below the 
threshold.

Number of merge operations required to exhaust a pq of size q:

1. Best case: Merge tree is perfectly balanced; size of each cluster is 
doubled by each merge operation. O(log q) merges are required.

2. Worse case: merge tree is q deep and requires O(q) merges.

Therefore, total cost of the iterative process is O(qk log q).



Complexity
Priority Queue

Worst case: bootstrapping does not reduce the number of initial clusters.

Bound of O(n2f2/b) on the original size q of the PQ, which reduces to O(n).

Therefore, total cost of the algorithm can be bounded by O(nk log n). 

(Worst case analysis of the total number of iterations accounts for the cost of bootstrapping because bootstrapping can be 
considered as a sequence of cluster merge operations which do not require updates/inserts to the pq)



 Complexity
Baseline

Both attribute and naive relational baselines must take a decision for each pair of 
references in a bucket:

Worst case: O(n)

Similarity computation is more expensive for the naive-relational approach 
because it requires a pair-wise match to be computed between two hyper-edges.



Experimental Evaluation
Real-World: Datasets

Key Idea: Use co-author relationships in papers to help discover the author entities in the domain and 
map the author references to entities.

CiteSeer: Contains 1,504 machine learning documents with 2,892 author references to 1,165 author entities. The 
only attribute information available is author name. Author’s full last name always provided, while first and middle 
names are sometimes provided as initials. 

arXiv: Contains 29,555 high energy physics publications with 58,515 author references to 9,200 author entities. 
The only attribute information available is author name. Author’s full last name always provided, while first and 
middle names are sometimes provided as initials.

BioBase: Contains 156,156 biology publications with 831,991 author references. All author first and middle 
names are abbreviated. Entity labels are available only for top 100 author names with the highest number of 
references. The BioBase dataset has a variety of other attributes which the authors use for resolution: the 
evaluate entity resolution performance over 10,595 references that have these 100 names.



Experimental Evaluation
Real-World: Uncertainty

Ambiguity: The disambiguation aspect of resolution. A name (last name and first initial) is ambiguous if multiple 
entities share that name. 

Dispersion: The identification aspect of resolution. The dispersion for an entity is the number of distinct observed 
names for each entity.

CiteSeer: Only 3 out of 1185 names are ambiguous, and the average number of entities per ambiguous name is 2.33 while 
the maximum is 3 (low ambiguity). 202 out of 1164 entities have multiple recorded names, the average and maximum 
dispersion are 1.24 and 8.
arXiv: 374 of 8737 names are ambiguous, and the average number of entities per ambiguous name is 2.41 while the 
maximum is 11. 3083 out of 8967 entities for arXIV are dispersed over multiple names, and the average dispersion is 1.44 
while the maximum is 10 (high dispersion).
BioBase: 84 of 100 names are ambiguous (high ambiguity). The number of entities for each name ranges from 1 to 100 
with an average of 32. Cannot determine dispersion because we do not have complete ground truth. Interesting 
hyper-edge structure because the number of author references per publication ranges from 1 to 100 with an average of 
5.3 (CiteSeer and arXiv range from 1 to 10).



Experimental Evaluation
Real World: Evaluation

Measure performance of algorithms based on the correctness of the pair-wise 
co-reference decisions over all references using the F1 measure: harmonic mean 
of precision and recall. 

Comparison between:

- Attribute-based entity resolution (A)
- Naive resolutional entity resolution (NR)
- A* and NR* are variants of the above two algorithms which perform transitive closures over 

pair-wise decisions.
- Collective Relationational Entity Resolution (CR) 



Experimental Evaluation
Real World: Similarity Measures

1. Soft TF-IDF: Augments TF-IDF schema of matching token sets with approximate token 
matching using a secondary string similarity measure. Performs well for name-based entity 
resolution.

2. TF-IDF: Utilized for the BioBase dataset because it contains attributes other than names.

Secondary String Similarity Measures:

1. Scaled-Levenstein: Edit-distance family of similarity measures which assigns unit cost to 
each edit operation and normalizes the result.

2. Jaro: Measures the number and order of common characters between strings.
3. Jaro-Wrinkler: Variant of Jaro that also considers the longest common prefix. Both are well 

suited for short strings such as personal names.



Experimental Evaluation
Real World: Experimental Details

Blocking is employed in both CiteSeer and arXiv because it is infeasible to consider all pairs 
as potential matches: retains ~99% of true duplicates for both datasets by allowing at most 
two character transpositions for last names.

Bootstrapping is employed over all three datasets. The authors implemented bootstrapping 
with a value of k=1 for low ambiguity domains CiteSeer and arXiv while they utilized a value 
of k=2 for BioBase.

The authors measured the performance of NR, NR*, and CR at 20 different values of 
combination weight α and report the best performance.

The authors estimated ambiguity of references for AdarName based on last names with first 
initial as the secondary attribute.  



Experimental Evaluation
Real World: Results

Standard deviation measures sensitivity of entity resolution performance in terms 
of similarity measure used for names. 

The results are not very sensitive to secondary string metric choice. For CR 
and the BioBase dataset, the choice is irrelevant. 

Scaled Levenstein measure was most often the best.



Experimental Evaluation
Real World: Results

Attribute-based entity resolution performs well for CiteSeer and arXiv because both datasets have 
relatively low levels of ambiguity as compared to BioBase. This correlates with a decrease in performance 
for A in the BioBase dataset.

When data-sets are not ambiguous, all dispersed entities can be successfully identified by raising 
the discrimination threshold for determining duplicates without generating false positives.

Bootstrap L-Amb performs almost as well as the attribute baseline for CiteSeer and arXIV while it 
performs many incorrect matches in BioBase because of its higher ambiguity.
Bootstrap H-amb performs poorly for CiteSeer and arXiv due to low recall but improves performance over 
Boostrap L-Amb for BioBase by increasing precision



Experimental Evaluation
Real World: Results

Attributes of related entries can help in disambiguation in domains with high ambiguity, there may 
not be much improvement for less ambiguous domains.

- The naive relational entity resolution algorithm only performs marginally better than A for CiteSeer 
and arXIV, while the improvement is significant for Biobase.

Transitive closures improve performance in data-sets with low ambiguity, but it may result in false 
identifications in datasets with higher ambiguity:

- Improves performance for both A and NR for CiteSeer and arXiv, but in BioBase it helps NR but not 
A.



Experimental Evaluation
Real World: Results

The collective relational entity resolution algorithm (CR) performs the best across all three 
data-sets.

- The performance benefits are modest for low ambiguous domains while they are highlighted in high 
ambiguous domains.

- Robust because performance is independent of choice of attribute similarity used.
- How much better??

The performance improvements of CR over NR is attributed to the consideration of the identities 
of related references rather than just their attributes. 



Experimental Evaluation
Real World: Results

Precision-Recall curve using Jaro similarity measure for 
names: Precision is the fraction of retrieved instances 
which are relevant while recall is the fraction of relevant 
instances which are retried.

- Benefits of CR are significantly larger in 
domains with high ambiguity such as BioBase 
(the authors had to zoom into the other two 
graphs to highlight the differences). 



Experimental Evaluation
Real World: Results

CR, NR, NR* require a weighing parameter α for 
combining attribute and relational similarity. A and A* 
do not depend on α. 

1. CR consistently outperforms NR and NR* for 
all values of α.

2. NR outperformance A only marginally for 
small values of α but performance drops 
significantly at higher values. Although more 
stable for BioBase, performance still drops 
below A for higher values of α.

Difference between CR and A performance at α=0 
comes from the bootstrapping phase.



Experimental Evaluation
Real World: Results

There is little difference in performance between graph-based similarity measures on the CiteSeer and 
arXiv datasets while there is more impact on BioBase

- There is not enough evidence to validate the use of frequencies (+Fr)



Experimental Evaluation
Real World: Results

1. Jaccard similarity improves performance over Common neighbors. This highlights the importance of 
considering the size of the common neighborhood as a fraction of the entire neighborhood.

2. AdarNbr performs worse than Jaccard. This highlights that the connectedness of a shared neighbor is not a 
reliable indicator because the graph is consolidated over iterations and new hyper edges are added to each 
cluster.

3. AdarName performs the best over all the graph-based similarity measures. It attempts to capture the 
uniqueness of a cluster of references.

4. Path3Sim has the lowest performance of all the graph-based similarity measures. This suggests that in dense 
collaboration graphs with many ambiguous entities,  going beyond immediate neighborhood can hurt entity 
resolution performance.



Experimental Evaluation
Real World: Execution 
Time

The use of collective relational entity resolution is more expensive computationally.

- 9 times as long as the baseline for CiteSeer and 17 times for arXiv.

Differences in degree of relational connectivity explains difference in execution times; the 
average number of neighbors per entity for CiteSeer is 2.15 and 4.5 for arXiv.

- Difference in execution time between CR and the baselines is much smaller for 
BioBase possibly because it has many attributes that A must take into account.

- NR is significantly more expensive than A: average number of authors per publication is 
5.3 for BioBase as compared to 1.9 for the other two data-sets. 



Experimental Evaluation:
Scalability

Complexity of CR is O(nk log n), for n input 
references where k represents the degree of 
connectivity among the references. 



Experimental Evaluation:
Real World: Comparison

LDA-ER is a probabilistic generative model for collective entity resolution which uses a 
non-parametric approach to resolve entities by discovering underlying groups of entities 
from observed relationships. It runs in O(t(ng+e) time for n references, where t is the 
number of iterations to converge, g is the number of groups, and e is the number of 
entities discovered.

- CR is superior in terms of performance and execution time but requires a similarity 
threshold to be specified

- LDA-ER does not require such a threshold and automatically figures out the most 
likely number of entities. 



Experimental Evaluation:
Synthetic Data

- Examine how different structural properties of datasets affect the performance 
of CR:

- Fraction of references which are ambiguous
- Number of neighbors per entity



Experimental Evaluation:
Synthetic Data: Generator

First stage: domain entities and their 
relationships are created. Create N 
entities and add M binary 
relationships between them.

Second Stage: generation of 
publications and their co-authors. R 
hyper-edges are generated, each 
with its own references. Each 
hyper-reference <ri,ri1….,rik> is 
generated by first sampling an entity 
e and generating a reference ri from 
it. Each instance rij comes from 
randomly sampling a neighbor e 
without replacement.  



Experimental Evaluation:
Synthetic Data: Evaluation

First experiment: studied the effect of the number 
of references in each hyper-edge

- CR is expected to benefit from larger 
hyper-edge sizes.

- Constructed an entity graph by creating 100 
entities and 200 binary relationships. Then 
created different reference datasets, each 
with 500 hyper-edges.

The performance of CR improves with 
increasing number of references per 
hyper-edge in stark contrast with NR’s 
degrade.



Experimental Evaluation:
Synthetic Data: Evaluation

Second experiment: varied the number of ambiguous 
references in the data.

- CR is expected to show larger improvements over 
the baseline for more ambiguous data. 
Disambiguation cannot be done using 
attributes. 

- Created five sets of datasets, each with 100 
entities, but with different ambiguous attribute 
probability. Then, they added 200 binary relations 
between these entities and generated 500 
hyper-edges with an average of 2 references per 
hyper-edge.

The performance drop for CR is significantly slower 
than those for the baselines because entity 
relationships help make the algorithm robust. 



Experimental Evaluation:
Synthetic Data: Evaluation

Third experiment: studied the impact of varying the 
number of relationships between underlying entities.

- Created a set of 100 entities. Created different 
entity graph structures by adding different number 
of relations between entities. Generated 500 
hyper-edges with an average of 2 references per 
hyper-edge from each of the different entity graphs. 

A does not change with respect to neighborhood size 
because performance is independent
NR degrades slightly with higher neighborhood sizes. 

Increasing the number of relationships does not always 
help CR; performance increases initially but peaks when 
average number of neighbors per entity is around 2. 



Experimental Evaluation:
Limitations

1. Similarity measures require a weighing parameter α for combining attribute 
and relational similarity. The authors argue that CR shows significant 
improvements in performance over all values of α. 

2. Determination of the termination threshold is an issue. This is a problem for 
any clustering algorithm. 



Conclusion
- CR significantly outperformed the baseline algorithm overall three data-sets; 

the degree of improvement depended on the ambiguity of the dataset. 
- Benefits of relational clustering over attribute-based approaches are greatest 

when there are many references per hyper-edge and when there are 
ambiguous references in the data.

- CR performance improves initially in relation to the number of relations 
between underlying entities increase although the later diminish as the 
patterns become less informative. 



Future Work
1. All of their data-sets were bibliographic; it would be interesting to study their 

algorithms on different types of relational data such as consumer data, social 
network data, and biological data

2. Integrate the collective resolution process with the extraction process; their 
work starts from data in which the references have already been extracted

3. They viewed entity resolution as an offline data-cleaning process while they 
have begun to investigate the notion of query-time entity resolution: only the 
data relevant to a query is resolved. 


