
Beehive: Simple Distributed Programming in

Software-Defined Networks

*

Soheil Hassas Yeganeh†

Google Inc., University of Toronto
soheil@{google.com,cs.toronto.edu}

Yashar Ganjali
University of Toronto

yganjali@cs.toronto.edu

Abstract
In this paper, we present the design and implementation
of Beehive, a distributed control platform with a simple
programming model. In Beehive, control applications are
centralized asynchronous message handlers that option-
ally store their state in dictionaries. Beehive’s control
platform automatically infers the keys required to process
a message, and guarantees that each key is only han-
dled by one light-weight thread of execution (i.e., bee)
among all controllers (i.e., hives) in the platform. With
that, Beehive transforms a centralized application into
a distributed system, while preserving the application’s
intended behavior. Beehive replicates the dictionaries
of control applications consistently through mini-quorums
(i.e., colonies), instruments applications at runtime, and
dynamically changes the placement of control applications
(i.e., live migrates bees) to optimize the control plane. Our
implementation of Beehive is open source, high-throughput
and capable of fast failovers. We have implemented an
SDN controller on top of Beehive that can handle 200K
of OpenFlow messages per machine, while persisting and
replicating the state of control applications. We also
demonstrate that, not only can Beehive tolerate faults, but
also it is capable of optimizing control applications after a
failure or a change in the workload.
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1. INTRODUCTION
Distributed control platforms are employed in practice for

the obvious reasons of scale and resilience [22, 18]. Existing
distributed controllers are designed for scalability and avail-
ability, yet they expose the complexities and boilerplates of
realizing a control application to network programmers [26].
Designing a distributed control application comprises sig-
nificant e�orts beyond the design and implementation of
the application. In such a setting, one needs to address
consistency, concurrency, coordination, and other common
complications of distributed programming that are pushed
into control applications in existing distributed control
platforms.
Beehive. Our motivation is to develop a distributed control
plane that is scalable, e�cient, and yet straightforward
to program. Our proposal is composed of a program-
ming model1 and a control platform. Using Beehive’s
programming model, control applications are developed as a
collection of message handlers that store their state in dictio-
naries (i.e., hash-maps), intentionally similar to centralized
controllers to preserve simplicity. Beehive’s distributed
control platform is the runtime of our programming model.
Exploiting the proposed programming model, it seamlessly
transforms a centralized application into its distributed
counterpart. Beehive achieves this by automatically par-
titioning the application’s logic. Application partitioning is
a well-studied scalability mechanism [19, 31, 25, 12]. Our
goal is to show how Beehive uses partitioning to provide
scalability and address issues related to such a design.

Using its programming model, Beehive is able to pro-
vide fault-tolerance, instrumentation, and automatic opti-
mization. To isolate local faults, our platform employs
application-level transactions with an “all-or-nothing” se-
mantic. Moreover, it employs mini-quorums to replicate
application dictionaries and to tolerate failure. This is
all seamless and without manual intervention. Beehive
also provides e�cient runtime instrumentation (including
but not limited to resource consumption, and the volume
of messages exchanged) for control applications. The
instrumentation data can be used to (i) automatically
optimize the control plane, and (ii) to provide feedback to
network programmers. In this paper, we showcase a greedy
heuristic as a proof of concept for optimizing the placement
of control applications, and provide examples of Beehive’s
runtime analytics for control applications.
1By programming model, we mean a set of APIs to develop
control applications using a general purpose programming
language, not a new domain-specific language (DSL).



Why not an external datastore? Emerging control
platforms, most notably ONOS [7], try to resolve controller
complexities by delegating their state management to an ex-
ternal system (e.g., replicated or distributed databases). In
Beehive, we propose an alternative design, since delegating
such functionality has important drawbacks.

It has been shown that, for SDN, using an external
datastore incurs a considerable latency overhead [24]. After
all, embedding the state inside the controllers (as pioneered
by ONIX [22]) has significantly lower overheads than using
an external system. Further, creating a correct distributed
control function requires coordination and synchronization
among control applications. This is essentially beyond state
management as demonstrated in [32, 10]. For example, even
if two instances of a routing application store their state in
a distributed store, they need to coordinate their logics in
order to avoid blackholes and loops. Implementing such
coordination mechanisms eliminates many of the original
motivations of opting for an external datastore.

More importantly, in such a setting, it is the external
data store that dictates the placement and the topology of
control functions. For instance, if the external data store is
built as a ring, the control plane cannot form an e�ective
hierarchy, and vice versa. This lack of fine-grained control
over the placement of state also limits the capabilities of the
control plane to self-optimize, which is one of the goals of
Beehive and has shown to be crucial for SDN [14]. For
instance, consider a controller with a virtual networking
application that is managing a virtual network. If the virtual
network migrates, the control plane needs to migrate the
state in accordance to the change in the workload. This is
di�cult to achieve without fine-grained control. Similarly,
providing Beehive’s runtime instrumentation, analytics, and
automatic optimization are quite di�cult to realize when
using an external datastore.
Overview. Our implementation of Beehive is publicly
available on [2]. Using Beehive, we have implemented a
full featured SDN controller [1] as well as important sample
applications such as Kandoo [16], a distributed key-value
store, a message queue, tra�c engineering, graph processing,
and network virtualization. With systematic optimizations,
our implementation can failover in less than 200ms, and
our SDN controller can handle more than 200K Open-
Flow messages per machine while persisting and replicating
the state of control applications. Interestingly, existing
controllers that use an external datastore can handle up
to a thousand messages with persistence and replication.
We also demonstrate that our runtime instrumentation
has negligible overheads. Moreover, using this runtime
instrumentation data, we show that Beehive is able to
automatically reduce the latency of a sample forwarding
logic when switches migrate or when there is a failure.

2. PROGRAMMING MODEL
In Beehive, programs are written in a general purpose

language (Go in our implementation) using a specific set
of APIs called the Beehive programming model. Creating
the distributed version of an arbitrary control application
that stores and shares its state in free and subtle forms is
extremely di�cult in general. The Beehive programming
model enables us to do that, while imposing minimal
limitations on the applications.

Control Plane

Traffic Engineering

s = msg.SwitchID
Dict(“Stats”).Put(s, msg)
if hasSpike(msg):
    Emit(TrafficSpike{…})

OpenFlow Driver SwitchJoined

Rcv(msg SwitchJoined) //    Init

Rcv(msg StatReply)    // Collect
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s = msg.SwitchID
Dict(“Stats”).Put(s, {})

foreach s in Dict(“Stats”):
    Emit(StatQuery{s})

update Dict(“TrafficMatrix”)
foreach f in ElephantFlows:
    Emit(FlowMod{...})

Switch Switch Switch Switch

TrafficMatrix

Figure 1: A simple tra�c engineering application
that periodically collects stats, and accordingly
reroutes flows.
The Anatomy of an Application. Using Beehive’s
programming, a control application is implemented as a set
of single-threaded message handlers (denoted by rcv) that
are triggered by asynchronous messages and can emit further
messages to communicate with other applications. In our
design, messages are either directly emitted, or generated
as a reply to another message. The former is processed
by all applications that have a handler for that particular
type of message. The reply messages, on the other hand, is
processed only at its destination application instance (i.e., in
the destination bee as we will explain in Section 3). For
example, an OpenFlow driver emits a packet-in message
when it receives the event from the switch. That message
is processed in all applications, say a learning switch and
a discovery application, that have a handler for packet-in
messages. The learning switch application, on the other
hand, replies to the packet-in message with a flow-mod, and
the flow-mod is directly delivered to the OpenFlow driver,
not any other application.

To preserve state, message handlers use application-
defined dictionaries. As explained in Section 3, these
dictionaries are transactional, replicated, and persistent
behind the scenes (i.e., hidden from control applications,
and without programmer’s intervention). Note that message
handlers are arbitrary programs written in a general purpose
programming language, with the limitation that any data
stored outside the dictionaries is ephemeral. Next, we
demonstrate this programming model for a simple tra�c
engineering example.
Example: Tra�c Engineering. As shown in Fig-
ure 1, a Tra�c Engineering (TE) can be modeled as
four message handlers at its simplest: (i) Init, which
handles SwitchJoined messages emitted by the Open-
Flow driver and initializes the flow statistics for switches.
(ii) Query, which handles periodic timeouts and queries
switches. (iii) Collect, which handles StatReplies (i.e., replies



to stat queries emitted by the OpenFlow driver), populates
the time-series of flow statistics in the Stats dictionary,
and detects tra�c spikes. (iv) Route, which re-steers flows
using FlowMod messages upon detecting an elephant flow.
Init, Query, and Collect share the Stats dictionary to
maintain the flow stats, and Route stores an estimated tra�c
matrix in the TrafficMatrix dictionary. It also maintains
its topology data, which we omitted for brevity.
Inter-Dependencies. Message handlers can depend on
one another in two ways: (i) they can either exchange
messages, or (ii) access an application-defined dictionary,
only if they belong to the same application. The interplay
of these two mechanisms enables the control applications
to mix di�erent levels of state synchronization and hence
di�erent levels of scalability. As explained shortly, commu-
nication using the shared state results in synchronization in
the application in contrast to asynchronous messages.

In our sample TE application, Init, Collect, and Query

share the Stats dictionary, and communicate with Route

using TrafficSpike messages. Moreover, Init, Collect,
Query, and Route depend on the OpenFlow driver that emits
SwitchJoined and StatReply messages and can process
StatQuerys and FlowMods.

Message handlers of two di�erent applications can com-
municate using messages, but cannot access each other’s
dictionaries. This is not a limitation, but a programming
paradigm that fosters scalability (as advocated in Haskell,
Erlang, Go, and Scala). Dependencies based on events
result in a better decoupling of functions, and hence can
give Beehive the freedom to optimize the placement of
applications. That said, due to the nature of stateful control
applications, functions inside an application can share state.
It is important to note that Beehive provides utilities to
emulate synchronous and asynchronous cross-application
calls on top of asynchronous messages.
Consistent Concurrency. Transforming a “centralized
looking” application to a concurrent, distributed system
is trivial for stateless applications: one can replicate all
message handlers on all cores on all machines. In contrast,
this process can be challenging when we deal with stateful
applications. To realize a valid, concurrent version of a
control application, we need to make sure that all message
handlers, when distributed on several controllers, have a
consistent view of their state and their behavior is identical
to when they are run as a single-threaded, centralized
application.

To preserve state consistency, we need to ensure that each
key in each dictionary is exclusively accessed in only one
thread of execution in the distributed control plane. In our
TE example (Figure 1), Init, Query and Collect access the
Stat dictionary on a per switch basis. As such, if we process
all the messages of a given switch in the same thread, this
thread will have a consistent view of the statistics of that
switch. In contrast, Route accesses the whole Topology and
TrafficMatrix dictionaries and, to remain consistent, we
have to make sure that all the keys in those dictionaries
are exclusively owned by a single thread. Such a message
handler is essentially centralized.

3. CONTROL PLATFORM
Beehive’s control platform acts as the runtime environ-

ment for the proposed programming model. This control
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Figure 2: In Beehive, each hive (i.e., controller)
maintains the application state in the form of cells
(i.e., key-value pairs). Cells that must be colocated
are exclusively owned by one bee. Messages mapped
to the same cell(s) are processed by the same bee.
platform is built based on the simple primitives of hive,
cells, and bees for concurrent and consistent state access
in a distributed fashion. Moreover, our control platform
provides runtime instrumentation and optimization of dis-
tributed applications. We have implemented Beehive in
Go. Our implementation is open source and available on
[2] as a generic, distributed message passing platform with
functionalities such as queuing, parallelism, replication, and
synchronization.

3.1 Primitives
Hives and Cells. In Beehive, a controller is denoted as a
hive that maintains applications’ state in the form of cells.
Each cell is a key-value pair in a specific application dic-
tionary: (dict, key, val). For instance, our TE application
(Figure 1) has a cell for the flow statistics of switch S in the
form of (Stats, S, StatsS).
Bees. For each set of cells that must be collocated to
preserve consistency (as discussed in Section 2), we create an
exclusive, logical and light-weight thread of execution, called
a bee. As shown in Figure 2, upon receiving a message, a hive
finds the particular cells required to process that message in
a given application and, consequently, relays the message to
the bee that exclusively owns those cells. A bee, in response
to a message, invokes the respective message handlers using
its cells as the application’s state. If there was not such a
bee, the hive creates one to handle the message.

In our TE example, once the hive received the first
SwitchJoined for switch S, it creates a bee that exclusively
owns the cell (Stats, S, StatsS), since the rcv function
(i.e., Init) requires that cell to process the SwitchJoined

message. Then, the respective bee invokes the rcv func-
tion for that message. Similarly, the same bee han-
dles consequent StatReplys for S since it exclusively owns
(Stats, S, StatsS). This ensures that Collect and Init

share the same consistent view of the Stats dictionary and
their behavior is identical to when they are deployed on
a centralized controller, even though the cells of di�erent
switches might be physically distributed over di�erent hives.
Finding the Bee. The precursor to finding the bee to
relay a message is to infer the cells required to process
that message. In Beehive’s control platform, each message
handler is accompanied with a map function that is either (i)
automatically generated by the platform or (ii) explicitly
implemented by the programmer.
map(A, M) is a function of application A that maps a message

of type M to a set of cells (i.e., keys in application



dictionaries {(D1, K1), . . . , (Dn, Kn)}). We call this set, the
mapped cells of M in A. We note that, although we have not
used a stateful map function, a map function can be stateful
with the limitation that its state is local to each hive.

We envision two special cases for the mapped cells: (i) if
nil, the message is dropped for application A. (ii) if empty,
the message is broadcasted to all bees on the local hive. The
latter is particularly useful for simple iterations over all keys
in a dictionary (such as Query in our TE example).
Automatically Generated map Functions. Our control
platform is capable of generating the map function at both
compile-time and runtime. Our compiler automatically
generates the missing map function based on the keys used by
application functions to process the message. The compiler
parses the application functions and generates the code to
retrieve respective keys to build the intended mapped cells.
For example, as shown in Figure 3, the compiler generates
the map functions based on the code in Collect, Query and
Init. Note that these cells are application-specific and
logical.

// Generated based on Init

1 map(msg SwitchJoined):
2 return {("Stats", msg.SwitchID)}

// Generated based on Query

3 map(msg Timeout):
4 return {} // Local broadcast.

// Generated based on Collect

5 map(msg StatReply):
6 return {("Stats", msg.SwitchID)}

7 ...

Figure 3: Automatically generated map functions
based on the code in Figure 1.

Beehive also provides a generic runtime map function that
invokes the rcv function for the message, and records all
state accesses in that invocation without actually applying
the modifications.
Life of a Message. In Beehive, a message is basically
an envelope wrapping a piece of data, that is emitted by a
bee and optionally has a specific destination bee. As shown
in Figure 4, a message has the following life-cycle in our
platform:
1. A bee emits the message upon receiving an event (such

as an IO event, or a timeout) or replies to a message that
it is handling in a rcv function. In the later case, the
message will have a particular destination bee.

2. If the emitted message has a destination bee, it is directly
relayed to that bee. Otherwise, on the same hive, we
pass the message to the map functions of all applications
that are triggered by that type of message. This is
done asynchronously via queen bees. For each application
on each hive, we allocate a single queen bee that is
responsible to map messages using the map function of its
application. Queen bees are in essence Beehive’s message
routers.

3. For each application, the map function maps the message
to application cells. Note that hives are homogeneous in
the sense that they all host the same set of applications,
even though they process di�erent messages and their
bees and cells are not identical at runtime.

4. After finding the mapped cell of a message, the queen bee
tries to find the bee that exclusively owns those cells. If
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Figure 4: Life of a message in Beehive.
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Figure 5: Throughput of a queen bee for creating
new bees, using di�erent batch sizes.

there is such a bee (either on the same hive or on a remote
hive), the message is automatically relayed. Otherwise,
the queen bee creates a new bee2, assigns the cells to it,
and relays the message. To assign cells to a bee, we use
the Raft consensus algorithm [29] among hives. Paying
one Raft consensus overhead to create a bee can be quite
costly. To avoid that, queen bees batch messages which
results in paying one Raft overhead for each batch. As
shown in Figure 5, the average latency of creating a new
bee can be as low as 140µs even when we use a cluster
of 11 hives. Clearly, the larger the batch size, the better
the throughput.

5. For each application, the respective bee processes the
message by invoking the rcv function.

6. If the rcv function function replies to the message, the
reply message is directly sent to the bee that has emitted
the received message (i.e., emitted in Step 1), and if it
emits a message, the message will go through Step 1.

Preserving Consistency Using map. To preserve consis-
tency, Beehive guarantees that all messages with intersecting
mapped cells for application A are processed by the same
bee using A’s message handlers. For instance, consider two
messages that are mapped to {(Switch, 1), (MAC, A1 : ...)} and
{(Switch, 1), (Port, 2)} respectively by an application. Since
these two messages share the cell (Switch, 1), the platform
guarantees that both messages are handled by the same bee
that owns the 3 cells of {(Switch, 1), (MAC, A1 : ...), (Port, 2)}.
This way, the platform prevents two di�erent bees from
modifying or reading the same part of the state. As a
result, each bee is identical to a centralized, single-threaded
application for its own cells.
Significance of map. The exact nature of the mapping
process (i.e., how the state is accessed) can impact Beehive’s
2Although by default the new bee is created on the local hive
and moved to an optimal hive later, the application can
provide a custom placement strategy when the default local
placement is not a good fit for that application’s design.



performance. Even though Beehive cannot automatically
redesign functions (say, by breaking a specific function in
two) or change map patterns for a given implementation, it
can help developers in that area by providing feedback that
includes various performance metrics, as we will explain in
Section 3.4.
Auxiliaries. In addition to the core functions presented
here, Beehive provides further auxiliary utilities for proac-
tively locking a cell in a handler, for postponing a message,
for composing applications, and for asynchronous and syn-
chronous cross-application calls. We skip these auxiliaries
for brevity.

3.2 Fault-Tolerance
For some simple applications, having a consistent replica-

tion of the state is not a requirement nor is transactional
behavior. For example, a hub or learning switch can
simply restart functioning with an empty state. For most
stateful applications, however, we need a proper replication
mechanism for cells.
Transactions. In Beehive, rcv functions are transactional.
Beehive transactions include the messages emitted in a
function in addition to the operations on the dictionar-
ies. Upon calling the rcv function for a message, we
automatically start a transaction. This transaction bu�ers
all the emitted messages along with all the updates on
application dictionaries. If there was an error in the message
handler, the transaction will be automatically rolled back.
Otherwise, the transaction will be committed and all the
messages will be emitted in the platform. We will shortly
explain how Beehive batches transactions to achieve high
throughput, and how it replicates these transactions for
fault-tolerance.

It is important to note that Beehive, by default, hides all
the aspects of transaction management. With that, control
applications are implemented as if there is no transaction.
Having said that, network programmers have full control
over transactions, and can begin, commit, or abort a new
transaction if they choose to.
Colonies. As shown in Figure 6, to replicate the transac-
tions of a bee, the platform automatically forms a colony.
Each colony has one leader bee and a few follower bees
in accordance to the application’s replication factor.3 In a
colony, only the leader bee receives and processes messages,
and followers act as purely passive replicas.
Replicating Transactions. Bees inside the colony form a
Raft [29] quorum to replicate the transactions. Note that
the platform enforces that the leader of the Raft quorum is
always the leader bee. Before committing a transaction, the
leader first replicates the transaction on the majority of its
followers. Consequently, the colony has a consistent state
and can tolerate faults as long as the majority of its bees
( 1

2 replication_factor + 1) are alive.
Batched Transactions. With a naive implementation,
replicating each transaction incurs the overhead of a quorum
for each message. This hinders performance and can result
in subpar throughput. To overcome this issue, we batch
transactions in Beehive and replicate each batch once.
With that, the overheads of replicating a transaction are
amortized over all the messages processed in that batch.

3Applications can choose to skip replication and persistence.
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Figure 6: Hives form a quorum on the assignment of
cells to bees. Bees, on the other hand, form quorums
(i.e., colonies) to replicate their respective cells in a
consistent manner. The size of a bee colony depends
on the replication factor of its application. Here, all
applications have a replication factor of 3.

To evaluate the impact of batching on Beehive’s through-
put, we have implemented a simple key-value store concep-
tually similar to memcached [15] in less than 150 lines of
code. To measure its throughput, we deployed our sample
key-value store application on a 5-node cluster on Google
Compute Engine. Each VM has 4 cores, 16GB of RAM,
10GB of SSD storage.

We configured the application to use 1024 buckets for the
keys with replication factors of 1, 3 and 5, and measured
the throughput for batch sizes from 128 to 8192 messages.
For each run, we emit 10M PUT (i.e., write) messages and
measure the throughput. As shown in Figure 7a, using
larger batch sizes significantly improves the throughput of
Beehive applications. This improvement is more pronounced
(3 to 4 orders of magnitude) when we use replication factors
of 3 and 5, clearly because the overheads are amortized. We
note that here, for measurement purposes, all the master
bees are on the same hive. In real settings, one observes a
higher aggregate throughput from all active hives.
Batching vs Latency. In our throughput micro-benchmarks,
we send requests to our application in batches. Although
that is the case in practice for most applications, one might
ask how the platform performs when the requests are sent
once the previous request is retrieved. To answer this
question, we used another 20-node cluster to query the key-
value store sample application. Each node has 4 clients that
send PUT or GET requests over HTTP and then measure
the response time (including the HTTP overheads).

As shown in Figure 7b, despite the lack of e�ective
batching for requests, Beehive handles most GETs in less
than 1ms if the key is on the local hive, and less than
7ms if the key is on a remote hive. The reason for such
a low read latency is that there is no need to replicate
read-only transactions. Moreover, it handles most PUTs
in less than 20ms. This indicates that, even in such a worst-
case scenario, Beehive handles requests with a reasonable
latency. As demonstrated above, in the presence of a batch
of messages, Beehive achieves a significantly better latency
on average.
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Figure 7: Latency and throughput of the sample
key-value store application: (a) Throughput using
replication factors of 1 to 5. (b) The PDF of the
end-to-end latency for GET and PUT requests in a
cluster of 20 hives and 80 clients.
Elasticity. Beehive’s colonies are elastic. When a follower
fails or when a hive leaves the cluster, the leader of
the colony creates new followers on live hives if possible.
Moreover, if a new hive joins the cluster and the colony is not
fully formed, the leader automatically creates new followers.
Note that forming a consistent colony is only possible when
the majority of hives are alive, since any update to a colony
requires a consensus among hives.
Failover. When the leader bee fails, one of the follower
bees will become the leader of the Raft quorum. Once the
new leader is elected, the quorum updates its transaction
logs and any uncommitted (but su�ciently replicated)
transaction will be committed (i.e., the state updates are
applied and bu�ered messages are emitted). Note that the
failover timeout (i.e., the timeout to start a new election) is
configurable by the user.

To demonstrate the failover properties of Beehive, we ran
the key-value store sample application with a replication
factor of 3 on a 3-node cluster. In this experiment, we
allocate the master bee on Hive 1, and send the benchmark
queries to Hive 2. After ~5 seconds, we kill Hive 1, and
measure the time the system takes to failover. As shown
in Figure 8, it takes 198ms, 451ms, and 753ms for the
sample key value store application to failover respectively
for Raft election timeouts of 100ms, 300ms, and 500ms.
Clearly, the smaller the election timeout, the shorter the
failover. Having said that, users should choose a Raft
election timeout that does not result in spurious timeouts
based on the characteristics of their network.
Network Partitions. In the event of a network partition,
by default, the platform will be fully operational in the
partition with the majority of nodes to prevent split-brain.
For colonies, however, they will be operational as long as
the majority of bees are in the same partition. Moreover,
if a leader bee falls into a minority partition, it can
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Figure 8: Beehive failover characteristics using
di�erent Raft election timeouts. Smaller election
timeouts result in faster the failover, but they must
be chosen to avoid spurious timeouts based on the
network characteristics.
serve messages with a read-only access on its state. For
example, when a LAN is disconnected from other parts
of the network, the bees managing switches in that LAN
will be able to keep the existing switches operational until
the LAN reconnects to the network. To achieve partition
tolerance, application dependencies and their placement
should be properly designed. Headless dependencies can
result in subpar partition tolerance, similar to any multi-
application platform. To mitigate partitions, one can deploy
one cluster of Beehive in each availability zone and connect
them through easy-to-use proxy functionalities that Beehive
provides. For brevity, we omit the discussion of those
functionalities and consider them beyond the scope of this
paper.

3.3 Live Migration of Bees
We provide the functionalities to migrate a bee from one

hive to another along with its cells. This is instrumental in
optimizing the placement of bees.
Migration without replication. For bees that are not
replicated, Beehive first stops the bee, bu�ers all incoming
messages, and then replicates its cells to the destination
hive. Then a new bee is created on the destination hive
to own the migrated cells. At the end, the cells are assigned
to the new bee and all bu�ered messages are accordingly
drained.
Migration with replication. We use a slightly di�erent
method for bees that are replicated. For such leader bees,
the platform first checks whether the colony has a follower
on the destination hive. If there is such a follower, the
platform simply stops the current leader from processing
further messages while asking the follower to sync all the
replicated transactions. Afterwards, the leader stops, and
the follower explicitly campaigns to become the new leader
of its colony. After one Raft election timeout, the previous
leader restarts. If the colony has a new leader, the leader
would become a follower. Otherwise, this is an indication of
a migration failure, and the colony will continue as it was.
In cases where the colony has no follower on the destination
hive, the platform creates a new follower on the destination
hive, and performs the same process.

3.4 Runtime Instrumentation
Control functions that access a minimal state would

naturally result in a well-balanced load on all controllers in
the control platform since such applications handle events



locally in small silos. In practice, however, control functions
depend on each other in subtle ways. This makes it
di�cult for network programmers to detect and revise design
bottlenecks.

Sometimes, even with apt designs, suboptimalities incur
because of changes in the workload. For example, if a virtual
network is migrated from one data center to another, the
control functions managing that virtual network should also
be placed in the new data center to minimize latency.

There is clearly no e�ective way to define a concrete
o�ine method to optimize the control plane placement. For
that reason, we rely on runtime instrumentation of control
applications. This is feasible in our platform, since we have
a well-defined abstraction for control functions, their state,
and respective messages. Beehive’s runtime instrumentation
tries to answer the following questions: (i) how are the
messages balanced among hives and bees? (ii) which bees
are overloaded? and, (iii) which bees exchange the most
messages?
Metrics. Our runtime instrumentation system measures
the resource consumption of each bee along with the number
of messages it exchanges with other bees. For instance,
we measure the number of messages that are exchanged
between an OpenFlow driver accessing the state of a switch
and a virtual networking application accessing the state of a
particular virtual network. This metric essentially indicates
the correlation of each switch to each virtual network. We
also store provenance and causation data for messages. For
example, in a learning switch application, we can report
that most packet_out messages are emitted by the learning
switch application upon receiving packet_in’s.
Design. We measure runtime metrics on each hive locally.
This instrumentation data is further used to find the optimal
placement of bees and also utilized for application analytics.
We implemented this mechanism as a control application
using Beehive’s programming model. That is, each bee emits
its metrics in the form of a message. Then, our application
locally aggregates those messages and sends them to a
centralized application that optimizes the placement of the
bees. The optimizer is designed to avoid complications such
as conflicts in bee migrations.
Overheads of Runtime Instrumentation. One of
the common concerns about runtime instrumentation is
its performance overheads. To measure the e�ects of
runtime instrumentation, we have run the key-value store
sample application for a batch size of 8192 messages and
a replication factor of 1, with and without runtime in-
strumentation. As shown in Figure 9, Beehive’s runtime
instrumentation imposes a very low overhead on the bees
as long as enough resources are provisioned for runtime
instrumentation. This is because instrumentation data is
processed asynchronously, and does not interfere with the
critical path in message processing.

3.5 Automatic Placement
By default, a hive which receives the first message for a

specific cell successfully acquires the lock and creates a new
bee for that cell. At this point, all subsequent messages for
the same mapped cells, will be processed on the new bee on
this hive. This default behavior can perform well when most
messages have locality (i.e., sources are in close vicinity),
which is the case for most networks [6]. Having said that,
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Figure 9: The PDF of a bee’s throughput in the
sample key-value application, with and without
runtime instrumentation.
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Figure 10: Inter-hive tra�c matrix of TE (a) with
an ideal placement, and (b) when the placement is
automatically optimized. (c) Bandwidth usage of
the control plane in (b).
there is a possibility of workload migration. In such cases,
Beehive needs to self-optimize via optimizing the placement
of bees.

Finding the optimum placement of bees is NP-Hard (by
reducing the facility location problem) and we consider it
outside the scope of this paper. Here, we employ a greedy
heuristic aiming at processing messages close to their source.
That is, our greedy optimizer migrates bees among hives
aiming at minimizing the volume of inter-hive messages. We
stress that optimality is not our goal and this heuristic is
presented as a proof of concept.

It is important to note that, in Beehive, bees that perform
IO cannot be migrated for obvious reasons. As a result,
our greedy heuristic will move other bees close to the IO
bees if they exchange a lot of messages. For instance,
as we demonstrate in Section 4, bees of a forwarding
application will be migrated next to the bee of an OpenFlow
driver, which improves latency. We also note that, using
our platform, it is straightforward to implement other
optimization strategies, which we leave to future work.
E�ectiveness of Automatic Placement. To demon-
strate the e�ectiveness of our greedy placement algorithm,
we have run an experiment using our TE example shown
in Figure 1 and measured the tra�c matrix between hives
which is readily provided by Beehive. We have simulated a
cluster of 40 controllers and 400 switches in a simple tree
topology. We initiate 100 fixed-rate flows from each switch,
and instrument the TE application. 10% of these flows have
spikes (i.e., detected as an elephant flow in Collect).

In the ideal scenario shown in Figure 10a, the switches are
locally polled and all messages are processed on the same
hives except the TrafficSpike messages that are centrally
processed by Route.

To demonstrate how Beehive can dynamically optimize
the control plane, we artificially assign the cells of all
switches to the bees on the first hive. Once our run-



time instrumentation collects enough data about the futile
communications over the control channels, it starts to
migrate the bee invoking Collect and Query to the hive
connected to each switch. In particular, it migrates the
cell (S, SWi, StatSWi ) next to the OpenFlow driver that
controls SWi. As shown in Figures 10b and 10c, this live
migration of bees localizes message processing and results
in a placement similar to Figure 10a. Note that this is all
done automatically by Beehive at runtime with no manual
intervention.
Application-Defined Placement. In Beehive, applica-
tions can define their own explicit, customized placement
method. An application-defined placement method can be
defined as a function that chooses a hive among live hives
for a set of mapped cells: Place(cells, live_hives). This
method is called whenever the cells are not already assigned
to a bee. Using this feature, applications can simply employ
placement strategies such as random, consistent hashing,
and resource-based placements (e.g., delegate to another
hive if the memory usage is more than 70%) to name a
few. It is important to note that, if none of these solution
works for a particular use-case, clearly, one can implement
a centralized load balancer application and a distributed
worker application.

4. SDN CONTROL PLATFORM
There are numerous alternative designs to realize a dis-

tributed SDN controller. Kandoo [16] and xBar [26] propose
hierarchies, ONIX [22] uses an eventually consistent flat
model, and Pratyaastha [24] uses partitioning to scale.
Beehive is able to support these well-known abstractions:
Using logically hierarchical keys in application dictionaries
(e.g., x for the parent and xy and xz for its children), one
can create hierarchies; using asynchronous messages and
local mapped sets, one can create eventual consistency; and
partitions are seamlessly inferred by Beehive.

More importantly, Beehive can accommodate applications
of di�erent designs in the same place. That is, using Beehive,
one can implement a control plane that manages forwarding
elements in partitions, gathers statistics in hierarchies, and
centrally optimizes tra�c. This is very beneficial since
network programmers can choose the apt abstraction of
each functionality instead of using the same setting for all
applications. Exploiting this property we have designed
an SDN control platform on top of Beehive to showcase
the e�ectiveness of our proposal. As we explain shortly,
our design uses a mixture of sharding, local applications,
hierarchies, and centralization to control the network.
SDN Controller Suite. We have designed and im-
plemented an SDN abstraction on top of Beehive. Our
implementation is open-source [1]. This abstraction can act
as a general-purpose, distributed SDN controller as-is, or
can be reused by the community to create other networking
systems. Our abstraction is formed based on simple and
familiar SDN constructs and is implemented as shown in
Figure 11.

Network object model (NOM) is the core of our SDN
abstraction that represents the network in the form of a
graph (similar to ONIX NIB [22]): nodes, links, ports, and
flow entries in a southbound protocol agnostic manner. We
skip the definition for nodes, ports, links, and flow entries
as they are generic and well-known.
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Figure 11: Beehive’s SDN controller suite

In addition to these common and well-known graph
constructs, Beehive’s SDN abstraction supports triggers
and paths that will simplify network programming at scale.
Triggers are basically active thresholds on bandwidth con-
sumption and duration of flow entries. They are installed
by network applications and pushed close to their respective
switches by the node controller (explained shortly). Triggers
are scalable alternatives to polling flow statistics from
switches directly from di�erent control applications. A path
is an atomic, transactional end-to-end forwarding rule that is
automatically compiled into individual flows across switches
in the network by the Path Manager. Using paths, control
applications can rely on the platform to manage the details
of routing for them.
Node Controller. In our design, node controllers are
the active components that manage the NOM objects. To
make them protocol agnostic, we have drivers that act as
southbound mediators. That is, drivers are responsible to
map physical networking entities into NOM logical entities.
The node controller is responsible to manage those drivers
(e.g., elect a master). The node controller stores its data
on a per switch basis and is automatically distributed and
placed close to switches.

Node controller is responsible for settings at node level.
At a higher level, we have path managers that install logical
paths on network nodes. We have implemented the path
manager as a centralized application, since it requires a
global view of the network to install proper flow-entries.
Note that all the expensive functionalities are delegated
to the node controller which is distributed and close to
switches.
Consolidator. There is always a possibility of discrepancy
between the state of a switch and the state of a node
controller: the switch may remove a flow right when the
master driver fails, or a switch may restart while the flow
is being installed by the driver. The consolidator is a
poller removing any flow that is not in the controller’s state,
and notifies the controller if the switch has removed any
previously installed flows.
Monitor. Monitor is another poller in the controller suite
that implements triggers. For each node, the monitor
periodically sends flow stat queries to find out whether any
trigger should fire. The monitor is distributed on a per-
node basis and, in most cases, is placed next to the node’s
controller. This reduces control channels overheads.
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Figure 12: Fault-tolerance characteristics of the control suite using a Raft election of 300ms: (a) The default
placement. (b) When the newly elected masters are on the same hive. (c) When the new masters are on
di�erent hives. (d) Reactive forwarding latency of (b). (e) Reactive forwarding latency of (c). (f) Reactive
forwarding latency of (c) which is improved by automatic placement optimization at second 6.

Beehive vs Centralized Controllers. To compare the
simplicity of Beehive with centralized controllers, we have
implemented a hub, a learning switch, a host tracker,
a firewall (i.e., ACL at the edge) and a layer-3 router
with respectively 16, 69, 158, 237 and 310 lines of code
using Beehive’s SDN abstraction. These applications are
similar in functionality and on par in simplicity to what
is available on POX and Beacon. The di�erences in
lines of code are because of di�erent verbosity of Python,
Java, and Go. The significant di�erence here is that
Beehive SDN applications will automatically benefit from
persistent storage, fault-tolerance, runtime instrumentation,
and optimized placement, readily available in Beehive.
Fault-Tolerance. To tolerate a failure (i.e., either a
controller failure or a lost switch-to-controller channel), our
node controller application pings the drivers of each node
(by default, every 100ms). If a driver does not respond to a
few (3 by default) consecutive pings, the driver is announced
dead. If the lost driver is the master driver, one of the slave
drivers will be instructed to become the master driver. It
is important to note that when the hive hosting the node
controller fails, the platform will automatically delegate the
node to a follower bee. In such scenarios, once the node
controller resumes, it continues to health-check the drivers.

To evaluate how our SDN controller reacts to faults, we
have developed a reactive forwarding application that learns
layer-2 and layer-3 addresses, but instead of installing flow
entries, it sends packet_outs. With that, a failure in the
control plane is directly observed in the data plane. In this
experiment, we create a simple network emulated in mininet,
and measure the round-trip time between two hosts every
100ms for 10 seconds. To emulate a fault, we kill the hive
that hosts the OpenFlow driver at second 3. In this set of
experiments, we use a Raft election timeout of 300ms.

Let us first clarify what happens for the control applica-
tions upon a failure. As shown in Figure 12a, because of the
default placement, the master bees of node controller and
the forwarding application will be collocated on the hive

to which the switch first connects. The driver on the hive
consequently will be the master driver. In this setting, the
average latency of the forwarding application will be about
1ms.

Failures in any of the hives hosting the slave bees would
have no e�ect on the control application (given that the
majority of hives, 2 in this case, are up and running).
Now, when the hive that hosts the master bees fail (or
goes into a minority partition), one of the follower bees of
each application will be elected as a master bee for that
application. There are two possibilities here: (i) as shown
in Figure 12b new masters may be both collocated on the
same hive, or (ii) as shown in Figure 12c, new masters will
be on di�erent hives4.

As portrayed in Figure 12d, when the new masters are
elected from the same hive the latency after the fail-over
will be as low as 1ms. In contrast, when the new masters
are located on di�erent hives the latency will as high as
8ms (Figure 12e). This is where the automatic placement
optimization can be of measurable help. As shown in
Figure 12f, our greedy algorithm detects the suboptimality
and migrates the bees accordingly. After a short spike in
latency because of the bu�ering of a couple of messages
during migration, the forwarding latency becomes 1ms. It
is important to note that as demonstrated in Figure 8, the
Raft election timeout can be tuned to lower values if a faster
failover is required in an environment.

When the link between the switch and the master driver
fails (i.e., due to an update in the control network, con-
gestion in channels, or a switch reconfiguration), something
similar happens (Figure 13a). In such scenarios, the
master driver notifies the node controller that its switch is
disconnected. In response, the node controller elects one
of the remaining slave drivers as the master. Although
the forwarding application and the master driver are not
from the same hive anymore, the forwarding application

4We cannot prefer a bee over another in a colony at election
time, as it will obviate the provable convergence of Raft.
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Figure 14: Throughput of Beehive learning switch-
ing application with di�erent replication factors.
The number of nodes (i.e., the x-axis) in this graph
represents the nodes on which we launch cbench.
will perform consistently. This is an important property
of Beehive. As shown in Figure 13b, the forwarding
latency would accordingly be high at first. As soon as the
automatic optimizer detects this suboptimality the bees are
migrated and the latency will drop. We note that, since the
drivers have IO routines they will never be migrated by the
optimizer. As a result, it is always the other bees that will
be placed close to those IO channels.
Scalability. To characterize the scalability of the Beehive
SDN controller, we benchmarked our learning switch appli-
cation deployed on 1, 3, and 5 hives with no persistence as
well as replication factors of 1, 3, and 5, all with a batch
size of 8192. We repeat the same tests for ONOS “reactive
forwarding” application (i.e., ONOS-0 represents ONOS
with no persistence, and ONOS-1, ONOS-3, and ONOS-5
respectively represent 1-node, 3-node, and 5-node clusters).
Both Beehive and ONOS applications perform the same task
of learning address to port mapping on each switch. Note
that, replication size and cluster size are equivalent in ONOS
since we do not have fine-grained control over where the
state of the application is replicated. As a result, unlike
Beehive, we cannot perform a test for a replication factor
of R on M VMs, where R<M . We stress each controller
by one cbench process. In these experiments, we use 5
Google Compute Engine (GCE) virtual machines with 16

virtual cores, 14.4GB of RAM, and directly attached SSDs.
We launch cbench on either 1, 3 or 5 nodes in parallel,
each emulating 16 di�erent switches. That is, when we
use 1, 3, and 5 nodes to stress the application we have
16, 48, and 80 switches equally spread among 1, 3, and
5 hives, respectively. Moreover, all SDN applications in
our controller suite (e.g., the node controller and discovery)
are enabled as well as runtime instrumentation. Although
disabling all extra applications and using a Hub will result
in a throughput of one million messages per second on a
single machine, we believe such a benchmark is not a realistic
demonstration of the real-world performance of a control
platform.

As shown in Figure 14, when we stress only 1 node in the
cluster the throughputs of the learning switch application
with di�erent replication factors are very close. As we
engage more controllers, the throughput of the application
with replication factors of 3 and 5 demonstrate increase
but at a slower pace. This is because when we use larger
replication factors, other hives will consume resources to
replicate the transactions in the follower bees.

As indicated by these micro-benchmarks, although the
ONOS and Beehive applications perform the same logical
task with similar updates in their state, Beehive outperforms
ONOS in throughput. This is mainly due to architectural
and implementation di�erences: Beehive handles message
passing, replication, and storage internally without relying
on an external datastore such as Hazelcast [3]. This allows
Beehive to transparently batch messages and transactions
to avoid communication overheads. We note that, recently,
ONOS has moved towards a design similar to Beehive,
as an e�ort to improve its scalability and performance:
i.e., sharded Raft with more granular control over partition-
ing of data. Although, at the time of this writing, we do not
see an improvement in our test results for ONOS’s reactive
forwarding application when it is configured as a learning
switch, we expect to see higher throughput as ONOS’s new
implementation matures.

5. DISCUSSION AND RELATED WORKS
What are the main limitations of Beehive’s pro-
gramming model? As we mentioned in Section 2,
Beehive applications cannot store persistent data outside
the dictionaries. Since the value of a dictionary entry can
be an arbitrary object, this requirement would not impose
a strong limitation on control applications. We note that
this requirement is the key enabler for the platform to
automatically infer the map function and to provide fault-
tolerance for control applications.

Another design-level decision is to provide a serialized,
consistent view of messages for each partition of cells owned
by a bee. That is, each bee is a single thread that
processes its messages in sequence. Thus, Beehive does
not provide eventual consistency by default and instead
processes messages in consistent shards. A Beehive ap-
plication can implement eventual consistency by breaking
the functionalities into local message handlers and using
asynchronous messages to share state instead of dictionaries.
We note that eventual consistency has many implications
and performance drawbacks [9, 13].
How does Beehive compare with existing distributed
programming frameworks? There is a significant body



of research on facilitating distributed programming. Propos-
als such as Coign [19], J-Orc- hestra [31], Live-Objects [30]
and Fabric [25] provide vertical partitioning frameworks to
place di�erent modules/objects of a program on di�erent
computing resources to scale.

There are also domain-specific programming frameworks
that transparently partition a centralized program into
di�erent pieces. Some of these approaches use o�ine static
analysis. For example, Pleiades [23] and Wishbone [28]
compile a centralized sensor network program into multiple
units of work that are o�oaded onto nodes across the wire-
less network. Other approaches mix-in dynamic profiling
at runtime to optimize their partitioning. For example,
CloneCloud [12] profiles a mobile application at runtime and
o�oads functionalities onto the cloud to minimize power
usage and maximize performance. These proposals are all
limited to a specific application domain that does not match
SDN controller requirements.

Moreover, special-purpose programming models, such as
MapReduce [4], MPI, Dryad [20], Cilk [8] and Spark [33]
have been proposed for parallel and distributed processing.
Although these proposals are focused on specific problems
(e.g., batch workloads) and are not aptly applicable for
generic distributed applications, Beehive has been inspired
by the way they simplify distributed programming.

Further, There are Domain-Specific Languages (DSLs),
such as BOOM [5], that propose new ways of programming
for the purpose of provability or verifiability. In contrast, our
goal in this paper is to create a distributed programming
environment similar to centralized controllers. To that
end, control applications in Beehive are developed using a
general purpose programming language using a familiar the
programming model.
How does Beehive compare with existing distributed
controllers? Existing control planes such as ONIX [22] and
ONOS [7] are focused on scalability and performance. Bee-
hive, on the other hand, provides a programming paradigm
that simplifies the development of scalable control appli-
cations. We note that abstractions such as ONIX NIB
can be implemented on Beehive, as we demonstrated for
Beehive’s SDN controller. More importantly, Beehive’s
automatic placement optimization leads to results similar
to what ElasticCon [14] achieves by load-balancing. Our
optimization, however, is not limited to balancing the work-
load of OpenFlow switches, applies to all applications, and
can be extended to accommodate alternative optimization
methods.
How does Beehive compare with fault-tolerance
proposals? LegoSDN [11] is a framework to isolate
application failures in a controller. Beehive also isolates
application failures using automatic transactions, which
is similar to LegoSDN’s Absolute Compromise policy for
centralized controllers. Other LegoSDN policies can be
adopted in Beehive, if needed. Moreover, Ravana [21]
is a system that provides transparent slave-master fault-
tolerance for centralized controllers. As demonstrated in
Figure 13a, Beehive has the capabilities not only to tolerate
a controller failure, but also seamlessly and consistently
tolerates faults in the control channel that is outside the
scope of Ravana.
Do applications interplay well in Beehive? The con-
trol plane is an ensemble of control applications managing

the network. For the most part, these applications have
interdependencies. No matter how scalable an application
is on its own, heedless dependency on a poorly designed
application may result in subpar performance. For instance,
a local application that depends on messages from a cen-
tralized application might not scale well. Beehive cannot
automatically fix a poor design, but provides analytics to
highlight the design bottlenecks of control applications, thus
assisting the developers in identifying and resolving such
performance issues.

Moreover, as shown in [10] and [27], there can be conflicts
in the decisions made by di�erent control applications.
Although we do not propose a specific solution for that issue,
these proposals can be easily adopted to implement control
applications in Beehive. Specifically, one can implement the
Corybantic Coordinator [27] or the STN Middleware [10]
as a Beehive application that sits in between the SDN
controller and the control applications. With Beehive’s au-
tomatic optimization, control modules are easily distributed
on the control platform to make the best use of available
resources.

6. CONCLUSION
In this paper, we have presented a distributed control

platform that provides an easy-to-use programming model.
Using this programming model, Beehive automatically infers
cohesive parts of an application’s state and uses that
to seamlessly transform the application to its distributed
version. By instrumenting applications at runtime, we
optimize the placement of control applications and provide
feedback to developers. We have demonstrated that our
proposal is capable of accommodating several di�erent
usecases. Implementing a SDN controller on top of Beehive,
we have demonstrated that this approach is simple yet
e�ective in designing scalable, distributed control planes.
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