2/21/18

Compsci 101, Lists, Loops,
Problems
Owen Astrachan

Kristin Stephens-Martinez
February 24, 2018

J isfor...

*« JSON

» Format for data transmitted across the web
* JPEG

* Image format based on lossy compression
« Jacquard Loom

» 1804 "automated" loom

PF Thursday

* Analyzing and comparing programming
techniques

» How does indexing work?

+ Solving an APT using techniques you know
* Parallel lists, e.g., as in FileFrequency.py

» Counting # words, analyzing frequencies

How do we program this?

http://bit.ly/101-ngram

Word Tally

the HH-H - 111
been LS |
message [11]
persevere | |
nation HE |||

2/21/18

Definite Indefinite Loops

["a","b","c","a"] 'index(|'b") ——3 1
[nan , np" , na" , nan] .index ("B") TROUBLE!
["a","b","c","a"] .index("B") 227 -1

* How do we write a better index function?
* |s this a definite, e.g., a for loop?
* Is this an indefinite, e.g., a while loop?
» Best case # iterations, worst case # iterations?

Fast and Built-in

* What does .index return when element not in list?

» Throws exception aka generates error and dies
« Standard Python idiom shown below, WHAT?

9-def index1(source,key):

10 if key in source:
11 return source.index(key)
12 return -1

Slower, but fast and illustrative

* What does break do in a loop?
» Why is found initialized to -1 before loop?

14-def index2(source,key):

15 found = -1

16 for dex in range(len(source)):
17 if source[dex] == key:

18 found = dex

19 break

20 return found

Best and Worst of all

* Reason about loop test/guard when finished

» Why is if needed after loop?

22-def index3(source,key):

23
24
25
26
27
28
29

dex 4 0
while dex < len(source) and source[dex] != key:
dex += 1

if dex == len(source):
return -1
return dex

2/21/18

Indexing.py

» Running to test three solutions. Look up every
possible key and keys that aren't in list

* Timing is shown below

* index1 for 5000 = 1.316
* index2 for 5000 = 4.474
* index3 for 5000 = 13.776

Short Circuit Evaluation

» Short circuit evaluation, these are not the same!

while dex < len(source) and source[dex] !'= key:
while source[dex] '= key and dex < len(source):

» As soon as truthiness of expression known ...

* Stop evaluating
* In Aand B, if A is false, do not evaluate B

Reasoning About Loops

» DeMorgan's Laws
not (A and B)equivalentto not(A) or not(B)
not (A or B) equivalentto not(A) and not(B)

while dex < len(source) and source[dex] != key:

* When loop is finished we know
« Either dex is too large OR we found key at dex
» Must test, but which test?

Python Logic Summarized

A and B is True only when A is True and B is True
A or Bis False only when A is False and B is False

Short-circuit evaluation of A or B ?

* If Ais true, do not evaluate B

if x == 3 or functionCall() ==
* If x == 5 is function called? If x == 37

Reasonable languages have short-circuit boolean
expressions

2/21/18

Lessons from Indexing Code?

» The built-in Python functions are optimized
 Execute using efficient low-level implementation
» We use C-Python, there are other interpreters

» Behind the scenes in Python
* You do not need to know this, but ...
» Don't look behind the curtain!
* https://www.youtube.com/watch?v=ublpoPjBUds

Case Study: FileFrequency.py

+ We'd like to analyze word occurrences
» Google N-Gram, it's easy to do, but ...
» What about occurrences of "cgat" in genome?
» What about Rotten Tomatoes?

« We'll build towards more efficient structures
+ We'll use an API for opening files

High Level View

» We will use parallel lists to track data
» Each words stored in a list named words
» Word counts stored in a list named counts
» # occurrences of words [k] in counts[k]

["applell , " f0x" , "vacuumll , lllime ll]
[5,2,25,15]

* What happens when we read a word?

Pseudo-code for getFileData

 Let user choose a file to open
* Deal with errors

Read each line of the file

« If word never seen before? Add to words and counts

{ * Process each word on the line
{
{

» Update # occurrences using .index and location

)
]
]
]

* Create list of ["apple",5] pairs of each word
* Return this list

2/21/18

From Pseudo to Code

27 for line in f:
28 data = line.strip(Q).split(Q)
29
‘3@ for word in data:
31 word = word.lower()
32 if word not in words:
E3 words.append(word)
4 counts.append(®)
35 location = words.index(word)
36 counts[location] += 1

Comparing Two Approaches

* Why do we have a loop in a loop?
» Code mirrors structure:
« file has lines, lines have words

* Notice:
for line in f:
* .lower data = line.strip().split()
* not in

for word in data:
o 4= word = word.lower ()
if word not in words:
words . append (word)
counts.append (0)
location = words.index (word)
counts[location] += 1

* .append
* .index

Comparing Two Approaches

* Why do we have only one loop?
» Code mirrors structure, which is better?
* File is a sequence of characters!!

for word in f.read() .lower () .split():
if word not in words:
words . append (word)
counts.append (0)
location = words.index (word)
counts[location] += 1

WOTO

http://bit.ly/101spring18-feb20-2

: 4 % % S,
- dlassroom KnOWIedge f=§ ‘lll(i"l'aé‘ | \\t\\u o,
: StUdentS car f computers ¢-ﬁ" ove
networks i oy knowledge 2, staff
récucin Class 0 \\I]nn

\Q
s Yy g?-“ ”la"e

atm § <
/ ,,,% %’B‘“neaumul e

2/21/18

BagFitter

* https://www2.cs.duke.edu/csed/pythonapt/bagfitter.ntml
» How do you solve this problem by hand?
"x" , "y" , "z" , llxll , llx" , "zll , |lzl| , llyll , lly"]

 Strength = 27 Strength = 37

 If we have # occurrences... y

~——

+ Similar to cement trucks? JHE
FITTE
b

Pseudo code solution

» Determine # occurrences of each unigque item
» Suppose these are in a list of int values

* How many bags needed? Is it n//strength ?
* Use numbers: nis 8, strengthis 3 or 4 or 5

» Which should we tackle first? Need to debug
» What problems have we seen before?

Testing in Eclipse

» Using ideas from FileFrequency.py ...
* Create parallel lists: strings and ints
» Strings inbags[] and #in counts[]

* Maintain invariant that # occurs of string in
bags [k] is stored in counts [k]

» When we see string seen before?
* When we see new string?

From Pseudo to Code

» Same idea we saw in FileFrequency.py

» We can also change code to use in bags rather
than not in bags

* Call .append (1) instead of .append(0)

for item in food:
if item not in bags:
bags.append (item)
do something
location = bags.index (item)
counts[location] += 1

2/21/18

Testing the Module

* Call function with example from description
* Print different bags and their counts
* Verify by hand/eye that this works

» Debug and fix as needed, still not ready to test in
online APT tester

» More than one part? Test each separately.
* After parts work? Integrate and test online

Helper Function

+ Given one number and strength, return # bags
* Eerily similar to midterm trucksNeeded
» More than one way to do this, ideas?

» Suppose strength is 9, and we have 8 items?
What about 9 or 10 items?

» Can we use % and //
» Can we modify value and just use // + 1?

Time to Do Another?

+ Eating Good vs. Eating Well?
* https://www2.cs.duke.edu/csed/pythonapt/eati

nggood.html
* How do we guard against "double adding"
» What else do we need to do to solve this?

if name not in names:

names . append (name)

