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Lecture #15 and #16
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1 Introduction

In this lecture, we will cover amortized analysis, which is a method where we consider the average work
done over an entire sequence of operations instead of just considering the worst-case cost/time for a single
operation; by doing such an analysis, we can obtain tighter bounds in scenarios when expensive operations
occur rarely enough that we can charge their cost to more frequent inexpensive operations. We cover such
charging arguments as well as the potential method, which is another powerful tool for doing amortized
analysis.

2 Binary Counting

2.1 Amortized Analysis

Suppose we wanted to increment a variable x starting at O until we reach some value n, where we represent x
as a binary number with |logn| + 1 bits (we’ll denote this binary representation as BIN(x)). Using the basic
carry addition algorithm (that we all know so well from primary school), we implement each x++ as follows.
Starting at the least significant bit (LSB), if we observe a 1 we flip it to 0 and then move to the next bit to the
left. Otherwise if we observe a 0, we flip it to a 1 and stop (for instance, if we add 1 to 10100110101171111,
we obtain 101001101/000000, where the digits in italics are the bits that get flipped).

Over all n increments, we can ask the question: how many bit flips do we do in total? Clearly, the
number of flips for a single increment is O(logn) since there are only |logn| + 1 bits, and since we do n
increments in total, a rough upper bound on the total flips is O(nlogn). However, it seems like we should be
able to tighten this aggregate bound since on many increments we are only flipping a few bits; ideally, we
would like to show a bound of O(n), which would establish that, even if the worst-case bound of a single
increment is ®(logn), on average we are only doing a constant amount of work for each operation.

We can indeed obtain an O(n) bound with the following “direct analysis.” Observe that the kth LSB (i.e.,
Oth least significant bit is the right most bit) can be flipped from 1 to 0 and back to 1 at most 7/2* times.
When this event happen, the counter has increased by 2, and since our final total is n, it follows that these
two flips can occur at most 72/2% times. Summing over all bit positions k and using the closed form for an
infinity geometric series we obtain:

[logn|+1 n ©
Total bit flips = k;) 7% < n-k;)? =2n=0(n).

2.2 Charging Arguments

This analysis is similar to arguments we have seen previously this semester: For each possible index for a
bit flip, we argued an upper bound on the number of times this type of flip/event can happen and summed
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these upper bounds over all possible positions to obtain the desired upper bound for the total number of
flips. Now, we are going to perturb this analysis somewhat and instead frame it as a charging argument. The
idea is that instead of analyzing each operation directly, we distribute or charge the work done on expensive
operations onto inexpensive operation and then sum over all the work done over all operations with this new
work distribution.

To make this more concrete, consider the following charging scheme for binary counting. First observe
that:

1. On a given increment, there is exactly one 0-1 flip (the last flip we perform); therefore, there are
exactly n 0-1 flips in total.

2. Each 1-0 is proceeded by a unique 0-1 flip.

Therefore, we charge every 1-0 flip the preceding 0-1 flip. By Observation 2, a given 0-1 flip is charged
exactly once; thus now, we have distributed the work so that 1-0 flips cost nothing and 0-1 flips cost 2—one
unit of work for doing the actual flip and then another unit of work from the charge the proceeding 1-0 flip
is now placing on this operation. Even though we have made 0-1 flips more expensive, we have only done
so by a constant amount. By Observation 1, there are only n 0-1 flips in total, and therefore using this new
work distribution we conclude that the number of flips is at most 2n = O(n).

2.3 Potential Functions

Another method for doing amortized analysis is using what are called potential functions. Broadly defined,
a potential function ®(i) maps the state of an algorithm or data structure after the ith operation to a carefully
defined non-negative value. The naming convention of calling ®(i) a “potential” comes from the fact that the
change in (i) is somewhat analogous to the state system accumulating potential energy and then releasing
it later as kinetic energy. On an inexpensive operation i, A® = ®(i) — P(i — 1) will likely be positive and
thus we build potential energy in the system. Then on expensive operations, we release potential energy as
kinetic energy by making A® negative, which will counterbalance the higher cost. Another analogy that is
often used is that the potential function is a bank account where we save money on inexpensive operations
and spend the money we have saved on expensive operations.

More specifically, let ¢; be the cost of operation i (so in the case of the binary counter, this is the number
of bits flipped on the ith increment). Given a potential function ®, we define the amortized cost ¢; of
operation i to be ¢; +®(i) — P(i — 1). Observe that we have the following bound if we perform n operations:

n n
Total amortized cost = Y & =Y (c;+ (i) —P(i— 1)) =
i=1 =1 =1

D=

(i) +@(n) — 2(0). (D

The last equality follows since all the ®(i) terms in the summation zelescope except for ®(0) and ®(n) (i.e.,
for each j = 1,...,n— 1, the positive term ®(i) when i = j will cancel with the negative term —®(i — 1)
when i = j+1). Therefore, as long as ®(0) and ®(n) are non-negative, then amortized cost is an upper
bound on actual cost (since actual cost is just Y| ¢;).

As we mentioned for our binary counter example, c¢; is just the number of bit flips on the ith increment.
To define our amortized cost, we will use the following potential function:

®(i) = The number of s in BIN(x) after i increments. ()

To do our analysis, consider the difference between the number of 1s in x before and after the ith
increment; namely, we will define ®(i) in terms of ®(i — 1). Observe that based on the algorithm, there
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are ¢; — 1 1s that become Os on the ith increment: the first ¢; — 1 are 1s being flipped to 0, and then the last
unit of cost is added from flipping the last 0 to a 1. Since this last flip also adds an extra 1 to x, the total
number of 1s after the ith increment is ®(i) = ®(i — 1) — (¢; — 1) + 1. Therefore, the total amortized cost is

as follows:
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Clearly, both ®(0) and ®(n) are non-negative (we cannot have a negative number 1s in BIN(x)); there-
fore by (1)), 2n = O(n) is an upper bound on the total actual cost, as desired.

To get some intuition as to how the potential function is working, observe that whenever we only flip
the first bit (i.e., we are incrementing an even number to an odd number), the amortized cost is 2 instead of
just 1—these are the operations where we save potential. For any increment where we flip three or more
bits, there is a drop in potential where we spend the money we saved from each of the odd increments. Note
that such operations can charge the potential much more than just a cost of 1 (it can be as high as log(n));
however, since we are saving potential on half of the increments, we always have enough money in the
potential’s bank account to lower the cost of every operation down to just 2.

#15 and #16-3



	Introduction
	Binary Counting
	Amortized Analysis
	Charging Arguments
	Potential Functions


