
COMPSCI 330: Design and Analysis of Algorithms 1/19/2016 and 1/21/2016

Divide and Conquer
Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Tianyu Wang

1 Overview

This set of notes is organized as follows. We begin by introducing an O(n2) sorting algorithm, which
motivates the concept of divide and conquer by introducing QuickSort. We then proceed by analyzing three
more examples: merge sort, bit-string multiplication, polynomial multiplication and an O(n)-time algorithm
for the problem of selection. We conclude by introducing the master theorem method for solving recurrence
relations. 1

2 Insertion Sort

We now investigate a simple sorting algorithm.

Algorithm 1 Insertion sort
1: function INS-SORT(A[1 . . .n],k)
2: for i← 1 to n do
3: INSERT(A[1, . . . , i−1], i) . assume INSERT inserts A[i] into sorted position in

A[1, . . . , i−1] and takes O(i) time.
4: return A[1,. . . ,n]

A recurrence relation for Algorithm 1 is

T (n) = T (n−1)+O(n).

We analyze the running time by computation tree:

n

n-1

n-2

O(n)

O(n-1)

O(n-2)

We have
1Some of the material in this note is from previous notes by Samuel Haney, Yilun Zhou and Nat Kell for this class in Fall 2014.

2-1

T (n) = O(n)+O(n−1)+O(n−2)++O(1) = O(n2)

Next, we show that we can design a faster sorting algorithm by divide-and-conquer technique.

3 QuickSort

In the following algorithm, A is the underlying array/list; r, l are rightmost (largest), and leftmost (smallest)
indices respectively.

3.1 The algorithm

Algorithm 2 QuickSort(A, l,r)
1: m← Pivot(A, l,r)
2: Swap(A, l,m)
3: QuickSort(A, l,m−1)
4: QuickSort(A,m+1,r)

The Swap(A, i, j) function just swap the values A[i] and A[j]. The Pivot function is described in the following
section.

3.2 Picking a pivot point

A pivot point is the point from where we divide the QuickSort into two subproblems. Below is an algorithm
for picking a pivot point.

Algorithm 3 Pivot(A, l,r)
1: i← l, j← r+1, x← A[i],
2: while i < j do
3: Repeat i++ until x≤ A[i]
4: Repeat j−− until x≥ A[j]
5: Swap(A, i, j)
6: Return j

Therefore, the recurrence relation for QuickSort is T (n) = O(n)+T (i)+T (n− i) where i is the chosen
pivot point. In the worst case, where i = n−1 or i = 1, T (n) = T (n−1)+O(n) = O(n2). In the best case,
where i = n

2 , T (n) = 2T (n
2)+O(n) = O(n logn).

3.3 Extension

Randomly picking a pivot point

In practice, we often randomly picking a pivot point with the following procedure inserted before picking a
pivot. The modified version is often referred to as Randomized QuickSort.

2-2

Algorithm 4 R-Select(A, l,r)
1: i← Random(l,r)
2: Swap(A, i, l)

Here the Random(l,r) function uniformly randomly generates an integer that is between l and r. The
analysis of the randomized QuickSort is beyond the scope of this course. With this trick, the expected
running time is O(n logn).

4 Mergesort

4.1 Introduction

Mergesort is a sorting algorithm with both worst-case and average-case performance of O(n logn). The
algorithm is also a recursive divide-and-conquer alillustrategorithm, but instead of using a pivot to decide
where to partition our subproblems, mergesort always divides the array equally. Mergesort then recursively
sorts these two subarrays and then combines (or merges) them into one master sorted array.

4.2 Pseudocode

1 // Msort(A,i,j) will sort element A[i] through A[j] in A

2 Msort(A,i,j)

3 B=Msort(A,i,(i+j)/2)

4 C=Msort(A,(i+j)/2+1,j)

5 A=merge(B,C)

6
7 // Merge(B,C) assumes sorted arrays B and C

8 // and merges them into one big sorted array

9 Merge(B,C)

10 D=empty array

11 i=j=k=1

12 while(i<|B| and j<|C|)

13 if(B[i]<C[j]) then D[k]=B[i], i++

14 else then D[k]=C[j], j++

15 k++

16 // At this point all elements of one array should be copied to D

17 Copy all elements of the other array into D

18 return D

4.3 Example

As an example, consider the following array: 7 1 5 2 0 -2. Mergesort will divide the array into two subarrays
7 1 5 and 2 0 -2. Then it will recursively sort these two arrays and give back 1 5 7 and -2 0 2. To merge these
two arrays, we first compare 1 with -2. Because -2 is smaller, it is copied to the final sorted array. Then 1 is
compared with 0 and 0 is copied to the final array. Then 1 and 2. This time 1 is smaller so 1 is copied to the
final array. Next 5 is compared with 2 and 2 is copied to final array. Now the second array has been used up
so 5 and 7 of the first array are copied to the final array. The final array is -2 0 1 2 5 7.

2-3

4.4 Performance

For mergesort, the worst-case and average-case performances are the same as the algorithm does not involve
any random selection or subarrays of variable length. Line 3 and 4 of the pseudocode each takes T (n/2)
time and the Mergeprocedure takes O(|B|+ |C|) time, where |B| and |C| are the sizes of the array B and C.
The recurrence relation is thus T (n) = 2T (n/2)+O(n). The computation tree is like:

n

n/2 n/2

O(n)

O(2(n/2))

O(2k(n/2k))

log2n levels

We have T (n) = O(n log2 n).

4.5 Comparison to QuickSort

QuickSort is in-place, thus consuming less space. On the other hand, QuickSort is less parallelizable, and
can potentially suffer from greater time complexity. Both algorithms are widely used, and in fact, they are
both expected to achieve the best running time that a comparison-based sorting algorithm can hope for,
which is O(n logn).

5 Multiplying Bit Strings

The problem is to multiply two n-bit numbers x and y. The straightforward way is to divide each number
into two parts and each part has n

2 bit.

x

y

xL xR

yL yR

n/2 n/2

We have

x = xL2
n
2 + xR

y = yL2
n
2 + yR

xy = xLyL2n +(xLyR + yLxR)2
n
2 + xRyR

The running time T (n) = 4T (n
2)+O(n). This recurrence relation can be solved by computation tree.

2-4

n

n/2 n/2 n/2 n/2

O(n)

O(21n)

O(2kn)

log2n levels

We have
T (n) = n(1+2+22 + ...2k + ...+2log2 n) = n(2log2 n+1−1) = O(n2)

There is a smarter way to do the multiplication based on the fact that

xy = xLyL2n +(xLyR + yLxR)2
n
2 + xRyR

= xLyL2n +((xL + xR)(yL + yR)− xRyR− xLyL)+ xRyR

Only three multiplications are needed: xLyL, xRyR and (xL + xR)(yL + yR). We have

T (n) = 3T (
n
2
)+O(n)

The computation tree is like

n

n/2 n/2 n/2

O(n)

O((3/2)n)

O(3/2)kn)

log2n levels

We have

T (n) = n(1+
3
2
+(

3
2
)2 + ...(

3
2
)k + ...+(

3
2
)log2 n) = O(n(

3
2
)log2 n) = O(3log2 n) = O(nlog2 3)≈ O(n1.585)

6 Polynomial Multiplication

Polynomial Multiplication is another example where Divide-and-Conquer technique can be applied. Assume

P(x) =
n

∑
k=0

akxk

and

Q(x) =
n

∑
k=0

bkxk.

2-5

If we naively multiply them term by term, it would be of complexity O(n2). However, we can apply the
following trick. Write

P(x) =

n
2

∑
i=0

aixi + x
n
2

n
2

∑
i=0

ai+n/2xi = P1(x)+ x
n
2 P2(x)

and

Q(x) =

n
2

∑
i=0

bixi + x
n
2

n
2

∑
i=0

bi+n/2xi = Q1(x)+ x
n
2 Q2(x).

Then

PQ = P1Q1 + x
n
2 (P1Q2 +P2Q1)+ xnP2Q2. (1)

The above equation tells us that we can divide the problem into 4 subproblems with half of the original input
size, which gives us the following recurrence relation:

T (n) = 4T (
n
2
)+O(n)

However, we can improve this to
T (n) = 3T (

n
2
)+O(n)

by the fact that

P1Q2 +P2Q1 = (P1 +P2)(Q1 +Q2)−P1Q1−P2Q2. (2)

Note that P1Q1 and P2Q2 in equation 2 also appear in equation 1. Therefore we only need to compute one
more multiplication, which is (P1 +P2)(Q1 +Q2), giving us the following recurrence relation

T (n) = 3T (
n
2
)+O(n)

This recurrence relation gives us T (n) = O(nlog2 3), which is faster than naively multiplying out all terms.

7 Median Finding and Selection

Suppose we are given an n element array A and we wish to find its median. An immediate algorithm to this
problem would be to first sort A using your favorite O(n logn)-time sorting algorithm. Then, we can look
at (n/2)th element in this sorted array to find the median. However, this approach seems to being too much
work—the added time it takes to order all the elements is unnecessary since we’re only interested in finding
the median. Ideally, we could find the median in O(n) time (an algorithm that solves this problem must run
in Ω(n) time; can you argue why?)

Instead of finding the median of A, we will actually solve the problem of selection instead, which is a
slightly more general problem. Specifically, the algorithm is now given a parameter k as input and is asked
to find the kth smallest item in A (i.e., the element we would find at index k if A was sorted). Clearly, solving
selection solves the problem of median finding if we set k = n/2. This more general structure will allow us
to correctly define our conquer step when devising our divide-and-conquer algorithm.

2-6

7.1 A DAC Algorithm for Selection

Our goal is to define an algorithm that finds the kth smallest element of an n element A in O(n) time. We
begin by defining the following correct (but as we will see) inefficient algorithm SELECTION(A,k):

1. Select a pivot value p ∈ A (for now, we do this arbitrarily). Then, restructure A so that it is the
concatenation of the following three subarrays: all elements less than p, followed by elements equal
to p, and then followed by elements greater than p; call these regions A1, A2, and A3, respectively. We
will also denote that |Ai|= ni.

2. If k ≤ n1, we return SELECTION(A1,k). Since A1 contains the n1 smallest elements in A and k ≤ n1,
we know that the kth smallest element in A1 is also the kth smallest element in A. Thus making a
recursive call on A1 that leaves the value of k unchanged will correctly return the desired element.

3. If n1 < k≤ n1+n2, simply return p. Here we know that the kth smallest element lies in A2. Since this
subarray only contains the value p, the desired entry must be the pivot p.

4. Otherwise, k > n1 + n2, in which case we return SELECTION(A3,k− n1− n2). Now we know our
desired element is in subarray A3; however, because this array is preceded by A1 and A2, we now must
locate the (k− n1− n2)th smallest element in A3 if we want to find the kth smallest element in the
overall array A (this just accounts for the preceding elements that we are essentially “chopping-off”
when we make a recursive call that only examines A3).

This completes the algorithm’s definition (note that here, step 1 defines the divide step, and steps 2-
4 define our conquer step; there is no combine procedure in this case). It should now be clear that this
algorithm is indeed correct; however, if we are not careful as to how we pick our pivot p, the running time
of the algorithm will suffer in the same way we saw quick-sort suffer in the last lecture.

More specifically, let T (n) be the running-time of the algorithm on an n element array. Recall that step
1 (i.e., picking a pivot and restructuring the array) can be done in O(n) time. The running time of steps
2-4 will depend on what case we fall in, but regardless, we can say it is bounded by T (max{n1,n3}) since
we only ever make recursive calls on A1 or A3 (but not both). If we get an even split each time we make a
recursive call and n1 ≈ n3 ≈ n/2, we will be in good shape. Formally, the running time of the algorithm in
this case is given by:

T (n) = T (n/2)+O(n)

≤ c · (n+n/2+n/4+ . . .+1) (3)

= cn · (1+1/2+1/4+ . . .+1/n) (4)

< cn ·2 = O(n), (5)

where c is the constant hidden by the O(n) term in the original recurrence. It should be fairly straightforward
to see why if we expand the recurrence, we obtain line (3). To see why inequality (5) is true, we quickly
review geometric series. Recall (hopefully) that for some real number 0≤ r < 1, we have that

1+ r+ r2 + r3 + . . .=
∞

∑
i=0

ri =
1

1− r
. (6)

For line (4), we have that r = 1/2 when examining the term (1+1/2+1/4+ . . .+1/n). Since this sum is
bounded by ∑

∞
i=0(1/2)i (the latter is an infinite sum whose terms subsumes the finite series in the former),

2-7

the closed form for an infinite geometric series given by (6) implies that these terms are bounded by 1/(1−
1/2) = 2.

Turning our attention back to SELECTION, the case where A1 and A3 are roughly equal in size will result
in this ideal running time; however, since we currently have no rule for picking a pivot, there is nothing
preventing, say, n1 = 0 and n3 = n− 1. If this worst case occurs for every recursive call we make, the
running time is now:

T (n) = T (n−1)+O(n)

= c · (n+n−1+n−2+ . . .+1) = O(n2).

Thus, as currently defined, the running time of SELECTION(A,k) is O(n2), which is worse than the
O(n logn) naive sorting approach we first gave. Clearly, if we want to get any pay dirt out of this algorithm,
we will have to find a way of picking the pivot so that we maintain at least some balance between the sizes
of A1 and A3.

7.2 Picking a Good Pivot

As outlined above, we would ideally like to pick a pivot so that n1 ≈ n3 ≈ n/2. The best pivot to pick then
is just the median of A; however, this is a bit circular. Selection is a problem that, at least when k = n/2,
is trying to find the median in the first place! Therefore, the somewhat arcane pivot-finding procedure we
are about to define attempts to find an “approximate” median in O(n) time. If there is at least some balance
between A1 and A3, hopefully we can discard a large enough fraction of the array in each recursive call to
yield our desired O(n) runtime.

Our new pivot procedure, which we will call PIVOT-FIND(A), is defined as follows (where again |A|= n):

1. Divide A into n/5 blocks B1, . . . ,Bn/5 each of size 5 (assume for sake simplicity that n is divisible by
5).

2. Sort each of these blocks individually, and so afterwards, the 5 elements in a given block Bi are sorted
with respect to one another. Note that the median of each block is now the third element within that
block.

3. For each block Bi, store Bi’s median in a new array C of size n/5.

4. We then return our pivot to be SELECTION(C,n/10), which is the median of C (n/10 comes from the
fact there are n/5 elements in C, and therefore the midway point in this array will be at n/10).

The most interesting observation to make about this procedure is the fact we are using a recursive call
to SELECTION as our means of picking the pivot. Thus, we are counterintuitively using the very divide-
and-conquer algorithm we are attempting to define as a subroutine when defining our divide step (picking
a pivot). So for example, consider our first recursive call to SELECTION(A,k). By the time PIVOT-FIND(A)
completes, we will have made several cascading calls to SELECTION and PIVOT-FIND on smaller arrays
before even reaching the first recursive conquer steps in our top recursive call (steps 2-4 in SELECTION). By
no means is this a typical approach when defining divide-and-conquer algorithms, but it is a great example of
how one can take an algorithmic paradigm and creatively dovetail standard techniques in order to construct
a faster algorithm.

2-8

Also note that this procedure indeed runs in O(n) time. Step 1-2 will take O(n) time since there are n/5
blocks, each of which take O(1) time to sort since they each have a constant number of elements (even if we
use bubble-sort or insertion-sort). Steps 3-4 will take O(n) time, as well, since we can step through all the
blocks in n/5 steps, pluck out each median at a given block’s third location, and then add it to C; hence, the
procedure’s overall running time is in O(n).

Now, let’s see what this new PIVOT-FIND(A) buys us. To do our analysis, consider reordering the blocks
so that they are sorted by their medians. More formally, we specify this ordering as Bφ(1), Bφ(2), . . . ,Bφ(n/5),
where φ is a function that remaps the block indices such that if mi is the median of block Bi, we have that
mφ(i) ≥ mφ(j) for all j < i and mφ(i) ≤ mφ(j) for all j > i. It is important to note that the algorithm is not
actually performing this reordering—we are just defining this structure for sake of analysis.

Observe that the pivot p returned by SELECTION(C,n/10) is the median of block Bφ(n/10). Now, define
the following sets:

• Let S1 be the set of all x ∈ A such that x ∈ Bφ(j), x ≤ mφ(j), and j ≤ n/10 (recall that we defined mi

to be the median of block Bi). Informally, these are elements that exist in the first half of this block
ordering and are less or equal to the median of the block to which they belong.

• Similarly, let S2 be the set of y ∈ A such that y ∈ Bφ(j), y≥ mφ(j), and j ≥ n/10. Likewise, this is the
set of elements that exist in the second half of our block ordering and are no smaller than the medians
of their respective blocks.

Figure 1 illustrates the definitions of these sets. So what is all this structure good for? Remember our
goal is to make sure that both A1 and A3 receive a large enough fraction of the elements. The following
lemma makes use of our block ordering Bφ(1), . . . ,Bφ(n/5) and our newly defined sets S1 and S2 to argue that
if we use PIVOT-FIND to find our pivot, we indeed obtain some balance.

Lemma 1. If we use PIVOT-FIND to pick the pivot p, then max{n1,n3} ≤ 7n/10.

Proof. Our key observations are that S1 ⊆ A1 ∪A2 and S2 ⊆ A2 ∪A3. Here, we will argue that the former
claim is true and show it implies that n3 ≤ 7n/10. We will leave establishing S2 ⊆ A2∪A3 and showing that
this implies n1 ≤ 7n/10 as an exercise (although, it should be symmetric to the argument we present here).

Let x ∈ S1. Therefore, x exists in some block Bφ(j) where j ≤ n/10 and is less than or equal to the
median of its block mφ(j). Since j ≤ n/10, mφ(j) must lie in the first half of C and therefore is no greater
than the median of C. Since PIVOT-FIND ensures that p is the median of C, we have that mφ(j) ≤ p. Thus, it
follows that x≤ p, implying that x ∈ A1∪A2, as desired.

To complete the proof, observe that S1 contains 3/5 of the elements in blocks Bφ(1), . . . ,Bφ(n/10), since
for each of these blocks, S1 includes the median and the two preceding elements. Since these blocks account
for half the elements in entire array A, it follows |S1| = 3n/10. However, we just showed S1 is a subset of
A1 ∪A2, implying that A1 ∪A2 cannot be smaller than 3n/10. This implies that |A3| = n3 can be no larger
than 7n/10 since n1 +n2 +n3 = n.

As mentioned at the start of the proof, a symmetric argument can be made to show n1 ≤ 7n/10. Hence,
we have that max{n1,n3} ≤ 7n/10.

We are now ready to complete our run-time analysis for SELECTION with PIVOT-FIND. Let’s briefly
recall the running times of all the components in a given recursive call of SELECTION(A,k), where again we
denote T (n) to be the total running time of this call if |A|= n.

2-9

B�(1)

B�(2)

...

B�(5)

B�(9)

...

10 14 15 23 40

12 13 17 83 91

20 21 22 30 31

29 31 35 91 99

45 49 50 51 69

11 12 64 67 80

72 73 75 88 89

22 23 81 83 99

10 11 97 98 99

S1 C S2

Figure 1: A diagram illustrating the definitions of Bφ(1), . . . ,Bφ(n/5), C, S1, and S2. Here n = 45, and thus we have
9 blocks in total. Observe that each block is sorted individually and that the blocks themselves are ordered based on
their medians. Array C is outlined in red, and the median of C, circled in pink, would serve as our pivot p. Sets S1 and
S2 are highlighted by the blue and green boxes, respectively. Also observe that all the elements in S1 and S2 are less
than and greater than the pivot, respectively (which is argued formally in Lemma 1).

2-10

• Steps 1-3 of PIVOT-FIND, where we divide our array into blocks and create the array of medians C,
takes O(n) time.

• Step 4 of PIVOT-FIND makes a call to SELECTION(C,n/10); since C is an array of size n/5, this will
take T (n/5) time.

• Restructuring the array around the pivot in steps 1-2 of SELECTION takes O(n) time.

• As we argued earlier, steps 2-4 of SELECTION take T (max{n1,n3}) time. By Lemma 1, we know that
this will be at most T (7n/10).

Thus, the overall running time of the algorithm is as follows (we will again use c as the constant that is
hidden by the O(n) term that bounds the running times of creating array C and pivoting the array around p).

T (n) = T (7n/10)+T (n/5)+ cn

< cn ·
∞

∑
i=0

(
9
10

)i

(7)

= cn ·10 = O(n), (8)

as desired. You should try to verify inequality (7) (use the tree expansion method; you should get that the
total work done on the kth level of the tree is cn · (9/10)k). Equation (8) follows by the closed form for a
geometric series we saw earlier in equation (6).

A final note: observe that if we had picked the size of each block to be 4 instead of 5, the recurrence
would now become T (n) = T (3n/4)+T (n/4)+O(n). When we expand the recursion tree for this recur-
rence, we are doing cn work at each level of the tree. Since the tree will have O(logn) levels, we instead get
a running time of O(n logn). Thus, the decision to use blocks of 5 was carefully made when designing the
algorithm to avoid getting this extra O(logn) factor. Picking anything greater than 5 will also work, but we
will still get an O(n) time algorithm since doing this will only improve the constant we get on line (8) (and
remember, any algorithm for selection must take Ω(n) time).

8 Master Theorem

Let us analyze a recurrence relation for a general divide-and-conquer algorithm: T (n) = aT (n
b)+O(nd).

The computation tree is like:

n

n/b

a branches

logbn levels

O(nd)

O(a(n/b)d)

O(ak(n/bk)d)

2-11

We have T (n) = O(nd +a(n
b)

d + ...+ak(n
bk)

d + ...+alogb n(n
blogb n)

d), where the item alogb n(n
blogb n)

d = alogb n =

nlogb a. The solution is based on the comparison between d and logb a. There are three situations:

• d > logb a: T (n) = ∑
logb n−1
j=0 a j(n

b j)
d =

nd− a
bd nlogb a

1− a
bd

. The item nd dominates and we have T (n) = O(nd).

• d < logb a: T (n) = ∑
logb n−1
j=0 a j(n

b j)
d =

nd− a
bd nlogb a

1− a
bd

. The item nlogb a dominates and we have T (n) =

O(nlogb a).

• d = logb a: All items have the same power and we have T (n) = O(∑
logb n−1
j=0

a j

bd j nd) = O(nd logb n).

2-12

	Overview
	Insertion Sort
	QuickSort
	The algorithm
	Picking a pivot point
	Extension

	Mergesort
	Introduction
	Pseudocode
	Example
	Performance
	Comparison to QuickSort

	Multiplying Bit Strings
	Polynomial Multiplication
	Median Finding and Selection
	A DAC Algorithm for Selection
	Picking a Good Pivot

	Master Theorem

