
COMPSCI 230: Discrete Mathematics for Computer Science February 25, 2019

Lecture 12
Lecturer: Debmalya Panigrahi Scribe: Erin Taylor

1 Overview

In this lecture, we introduce the idea of structural induction. We define recursive data structures
and use structural induction to prove properties of these data structures.

2 Structural Induction and Recursive Data Structures

So far we have been thinking of induction as a “bottom up” approach for proving a predicate for
all natural numbers. First we directly prove a base case, and then we begin to build up. Suppose
we wanted to prove P(n) for all natural numbers n. We first proved a base case such as P(1), then
we prove that for all n, P(n)→ P(n + 1). Thus, we prove P(1) is true and use the implication to
show P(1)→ P(2). Now that we’ve established P(2), we can show P(3) since P(2) implies P(3).
In summary, the logic for proving P(n) is true proceeds as follows:

P(1) is true, and P(1)→ P(2)→ P(3)→ · · · → P(n) is true, so P(n) is true.

We can think of this chain of logic in the opposite direction as well (a “top down” approach). If
we want to prove P(n) for some arbitrary n, and we know that P(n− 1)→ P(n) then we should
focus on proving P(n− 1). We are using the same logic, but thinking in a more recursive manner.
Induction is a more general technique, and can prove predicates for different domains. For instance,
if we wanted to prove something about the even positive integers then our base case would be P(2)
and we would show P(n)→ P(n + 2) for all n to conclude the following:

P(2) is true, and P(2)→ P(4)→ · · · → P(n− 2)→ P(n) is true, so P(n) is true.

So far, we have been proving predicates defined on natural numbers, but such a logical chain
is even more general. Suppose we had a data structure S. We want to show a property holds for
this data structure: P(S). Suppose we have an element a ∈ S, and we know the property holds for
S \ {a}. Then we want to show P(S \ {a})→ P(S). For example, S could be a stack and a could be
the element at the top of the stack. If we want to prove a property P(S), we could do so as follows:

P({e1}) is true, and P({e1})→ P({e1, e2})→ · · · → P(S \ {en})→ P(S) is true, so P(S) is true.

We see that our base case is directly showing P(S) holds if S has a single element, and then we
show implications increasing the number of elements in the stack until we arrive at a stack with n
elements. This technique is known as structural induction, and is induction defined over the domain
of recursively defined structures.

12-1

Next, we will study two concrete examples of data structures defined recursively and use
structural induction to prove properties of these structures. Definitions of recursive data structures
consist of two parts:

1. Base Case: The base case specifies an initial, or minimal element.

2. Constructor Case: The constructor case specifies how to construct new instances of the data
structure from base instances or previously constructed instances.

2.1 Binary Strings

A binary string is a sequence of 0s and 1s. Alternatively, we can define binary strings recursively.

Binary Strings:

• Base Case: The empty string λ is a binary string.

• Constructor Case: If s is a binary string, then a.s is a binary string where a ∈ {0, 1}.

We can use this definition to create arbitrary binary strings. To convince ourselves that this is a
valid definition of binary strings, we can prove some properties that should be true about binary
strings and only use the above definition. Let |s| denote the length of string s. We can define the
length of binary strings as follows:

Length:

• Base Case: |λ| = 0.

• Constructor Case: |a.s| = 1 + |s| where a ∈ {0, 1}.

Next, let’s define a recursive operation for string concatenation. This function takes binary
strings s and t and outputs s.t.

Concatenation:

• Base Case: If s = λ, then s.t = t.

• Constructor Case: If s 6= λ, then let s = a.s′ where a ∈ {0, 1} by the constructor case of the
binary string definition. Then, we define s.t = (a.s′).t = a.(s′.t).

Now we want to show that the function we defined actually concatenates strings.

Claim 1. If s is a binary string, then s.λ = s.

This predicate should the correct output of concatenating a string with an empty string. Our
predicate P(s) is s.λ = s. We will prove this property using structural induction and our definition
of concatenation.

12-2

Proof of Claim 1. Base Case: Our base case is s = λ. We want to show P(λ) : λ.λ = λ. To show this,
we will use the base case of the definition of string concatenation. If s = λ, then s.t = t. Here, t = λ,
so λ.λ = λ as desired.

Inductive Case: Let s = a.s′ where a ∈ {0, 1}. We want to show P(s′) → P(s). For our inductive
hypothesis, we assume that P(s′) is true. Now,

s.λ = (a.s′).λ by the definition of S.
= a.(s′.λ) plugging in t = λ in the constructor case for concatenation.
= a.s′ by the inductive hypothesis.
= s by definition of s.

Thus, we have proved P(λ) and that for any s = a.s′, P(s′)→ P(s). Therefore, the claim holds for
any binary string s.

Claim 2. If s and t are binary strings, then |s.t| = |s|+ |t|.

Proof. Base Case: Our base case will be s = λ. Then we have |λ.t| = |t| by the base case of string
concatenation. Thus, |λ.t| = |t| = 0 + |t| = |λ|+ |t|. Thus, the claim holds for the base case.
Inductive Case: Let s = a.s′ where a ∈ {0, 1}. We want to show that P(s′)→ P(s). We assume that
P(s′) is true, that is |s′.t| = |s′|+ |t|. Now,

|s.t| = |(a.s′).t| by definition of s
= |a.(s′.t)| by constructor case for concatenation
= 1 + |s′.t| by constructor case for length
= 1 + |s′|+ |t| by inductive hypothesis
= (1 + |s′|) + |t| rearranging
= |a.s′|+ |t| by constructor case for length
= |s|+ |t| by definition of s

2.2 Rooted Trees

Now let’s create a recursive definition of rooted trees.

Rooted Tree

• Base Case: A single node that acts as the root.

• Constructor Case: A node called a root whose children are roots of rooted trees themselves.

See Figure 1 for an example of a rooted tree. The root has 4 children, each who is the root of
another rooted tree (in Figure 1 these are T1, T2, T3, T4).

12-3

root

T1 T2 T3 T4

Figure 1: An example of a rooted tree.

Let’s prove a property of rooted trees using our inductive definition.

Claim 3. Any rooted tree with n nodes has n− 1 edges.

Proof. Base Case: Our base case is when the rooted tree has 1 node. In this case, the tree has no
edges. Thus, n = 1 and the number of edges is 0 = 1− 1 = n− 1. The claim is true for the base
case.
Inductive Case: Suppose we have tree T with a root r. Suppose r has k children. Let the trees
rooted at the children of r be T1, . . . , Tk. Let the number of edges of each Ti be mi and the number
of nodes ni (i = 1, . . . k). For our inductive hypothesis, we assume for every Ti, mi = ni − 1. Now
consider tree T. Let m be the number of edges in T. There are k edges from the root to each of its k
children, and then we need to count the edges in each Ti:

m = k +
k

∑
i=1

mi

=
k

∑
i=1

(1 + mi) moving the k term into the sum

=
k

∑
i=1

(1 + (ni − 1)) by the inductive hypothesis

=
k

∑
i=1

ni simplifying

= n− 1 since this is all nodes except the root

2.3 Binary Trees

A binary tree is a rooted tree where each node has at most 2 children. Just as rooted trees, we can
define binary trees recursively.

Rooted Binary Tree

• Base Case: A single vertex that acts as the root.

• Constructor Case: A vertex which is the root that has one or two children each of which is the
root of a binary tree.

12-4

Now, let’s define the depth (height) of a binary tree.

Depth of a Binary Tree

• Base Case: A tree with only a single vertex has depth 1.

• Constructor Case: Suppose we have tree T where the root has either one child that is the root
of a binary tree T1, or two children that are the roots of binary trees T1 and T2. In the first case,
depth(T) = 1 + depth(T1) and in the latter case, depth(T) = 1 + max{depth(T1), depth(T2)}.
For brevity, if the root has only a single child, we will say that tree T2 is empty and assume
that its depth is 0.

We have the following theorem relating the depth of a binary tree and the number of nodes in
the tree.

Theorem 4. A binary tree of depth d has at most 2d − 1 vertices.

Proof. Let the number of nodes in a binary tree T be |T|.
Base Case: The base case is when we have a binary tree with one vertex. The depth is 1 = d, and
2d − 1 = 2− 1 = 1. In this case, the theorem holds.
Inductive Case: Suppose T is a binary tree of depth d + 1. Our inductive hypothesis is that any
binary tree of depth d′ < d + 1 has at most 2d′ − 1 nodes. Let T1 and T2 denote the two subtrees
rooted at the two children of the root of T. (Note that it is possible for T1 or T2 to be empty, but not
both). Now notice that the vertices of T include the root, the vertices in T1, and the vertices in T2.
So, |T| = 1 + |T1| + |T2|. Now recall that the depth of T is the following:

depth(T) = 1 + max{depth(T1), depth(T2)}.

This implies depth(T1) ≤ d and depth(T2) ≤ d. Thus, we can apply our inductive hypothesis on T1
and T2.

|T| = 1 + |T1|+ |T2| ≤ 1 + 2d − 1 + 2d − 1 = 2d+1 − 1.

Thus, the theorem holds for all binary trees.

3 Summary

In this lecture, we introduced structural induction and used it to prove properties of recursively
defined data structures like binary strings, rooted trees, and binary trees.

12-5

	Overview
	Structural Induction and Recursive Data Structures
	Binary Strings
	Rooted Trees
	Binary Trees

	Summary

