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1 Overview

In this lecture, we begin our study of graph theory. We introduce common classes of graphs and
prove some simple properties of graphs. Finally, we study matchings in bipartite graphs.

2 Basic Definitions for Graphs

A graph G = (V, E) is an ordered pair of sets. V denotes the set of vertices, and E the set of edges.
For our purposes, V is a finite, non-empty set. E ⊆ V(2), where V(2) is the set of 2-element subsets
of V. It is common notation to let |V| = n and |E| = m. Let’s consider an example.

Example 1: See Figure 1.
V = {1, 2, 3}
V(2) = {{1, 2}, {1, 3}, {2, 3}}
E = {{1, 2}, {1, 3}}
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Figure 1: Graph in Example 1
We say that the two vertices an edge connect are the ‘endpoints’ of the edge. The edge is said to

be incident on its two endpoints. Graphs defined as above are said to be undirected, and can be
used to represent symmetric relationships. For example an undirected graph could represent the
relations ‘is a friend of’ or ‘was born in the same month as’.

Definition 1. The degree of a vertex v ∈ V, denoted d(v), is the number of edges incident on v.

We have the following simple lemma characterizing the relationship between the total sum of
degrees in a graph and the number of edges.

Lemma 1. The sum of degrees of vertices in a graph is twice the number of edges, i.e.,

∑
v∈V

d(v) = 2m.

Proof. We will prove Lemma 1 by induction. We will induct on the number of edges in the graph.
For non-negative m, we will prove the lemma holds for any graph with m edges.
Base Case: If a graph G = (V, E) has no edges (E = ∅), then every vertex has degree 0. Thus,
∑v∈V d(v) = 0 = 2(0).
Inductive Case: For our inductive hypothesis, we assume the claim holds for any graph with less
than m edges. Then, we want to prove the claim for an arbitrary graph G = (V, E) where |E| = m.
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Fix an arbitrary edge of G and remove it. Let this edge be e = {a, b}. Let G′ = (V, E′) where
E′ = E \ {e}. Then, G′ is a graph with m− 1 edges. Let d′(v) be the degree of v ∈ V in G′. By our
inductive hypothesis,

∑
v∈V

d′(v) = 2(m− 1).

For all v ∈ V \ {a, b}, d′(v) = d(v). Additionally, d(a) = 1 + d′(a) and d(b) = 1 + d′(b) since a, b
are endpoints of edge e, and so are incident on one more edge in G than in G′. Thus,

∑
v∈V

d(v) = 2 + ∑
v∈V

d′(v) = 2 + 2(m− 1) = 2m.

Therefore, for any graph G = (V, E) the theorem holds.

We now introduce the concept of subgraphs. This is similar to the idea of subsets, but for graphs
instead of sets.

Definition 2. A subgraph G′ = (V ′, E′) of graph G = (V, E) satisfies the property that V ′ ⊆ V and
E′ ⊆ E.

See Figure 2 and Figure 3 for an example of a subgraph.

Figure 2: A graph Figure 3: A subgraph of the
graph in Figure 2.

3 Special Types of Graphs

Many categories of graphs arise frequently in both practice and theory, and have special names.

• Empty Graph: The empty graph is a graph with no edges, i.e. E = ∅. See Figure 4 for an
example.

• Complete Graph: The complete graph is a graph with all possible edges, i.e. E = V(2). See
Figure 5 for an example.

• Cycle Graph: A cycle graph must have at least three vertices. Suppose graph G had vertices
V = {1, 2, . . . , n}. Then G is a cycle graph if E = {{1, 2}, {2, 3}, . . . {n− 1, n}, {n, 1}}. Notice
that |E| = n. See Figure 6 for an example.
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Figure 4: An empty graph
with 4 vertices.
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Figure 5: A complete graph
with 5 vertices
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Figure 6: An cycle graph
with 5 vertices.

Lemma 2. An n-vertex complete graph has n(n−1)
2 edges.

Proof. We will prove Lemma 2 using induction. We will induct on the number of vertices in the
graph. For positive n, we will prove the lemma holds for any graph with n vertices.
Base Case: If a graph a complete G = (V, V(2)) has 1 vertex, then G has no edges and n(n− 1)2 =
1(0)/2 = 0.
Inductive Case: For our inductive hypothesis, we assume a complete graph with 1 ≤ n′ < n
vertices has n′(n′ − 1)/2 edges. Now, we will prove the lemma for an arbitrary n-vertex complete
graph. Fix a vertex, v ∈ V. Create G′ by removing v and all edges incident on v. G′ is a complete
graph with n− 1 vertices. Thus, by our inductive hypothesis, G′ has (n−1)(n−2)

2 edges. The number
of edges in G is the number of edges in G′ and all edges incident on v. There are exactly n− 1 edges
incident to v. Therefore:

|E| = (n− 1) +
(n− 1)(n− 2)

2
= (n− 1)

(
1 +

n− 2
2

)
=

n(n− 1)
2

.

Thus, any n-vertex complete graph has n(n−1)
2 edges.

Another graph that arises frequently in practice are bipartite graphs.

Definition 3. A bipartite graph is a graph G = (V, E) in which V can be partitioned into two sets A, B
such that E ⊆ {{x, y} : x ∈ A, y ∈ B}. Thus, V = A ∪ B and A ∩ B = ∅.

Bipartite graphs arise frequently in practice. For example, suppose we have a group of mentors
and mentees. We can model this situation using a bipartite graph. Edges represent the willingness
of a pair to have a mentor/mentee relationship. There will be no edges within the set of mentors or
within the set of mentees, since a mentor does not need to be mentored and a mentee cannot be a
mentor. We have the following property of bipartite graphs.

Lemma 3. For a bipartite graph G = (V, E) where V = A ∪ B and |E| = m,

∑
v∈A

d(v) = ∑
v∈B

d(v) = m

Proof. Let G = (V, E) be an arbitrary bipartite graph where V = A ∪ B. Each vertex is either in A
or B, but not both since A and B are disjoint. Thus,

∑
v∈V

d(v) = ∑
v∈A

d(v) + ∑
v∈B

d(v) = 2m.
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The last equality holds by Lemma 1. Every edge has one endpoint in A and one endpoint in B, so
∑v∈A d(v) = ∑v∈B d(v). Thus, 2m = 2 ∑v∈A d(v). This implies

∑v∈A d(v) = ∑v∈B d(v) = m.

4 Matchings in Bipartite Graphs

Consider again a bipartite graph representing mentors and mentees. We might want to assign
a unique mentor to each mentee. To do so, our graph would have to satisfy some additional
properties. First, let us introduce some more definitions.

Definition 4. A bipartite matching is a bipartite graph G = (V, E) such that for every vertex v ∈ V,
d(v) ≤ 1.

See Figure 7 for an example of a bipartite matching.

Figure 7: A bipartite matching.

Definition 5. A perfect matching is a bipartite graph G = (V, E) such that for every vertex v ∈ V,
d(v) = 1.

Figure 9, 10 show two perfect matchings of the bipartite graph in Figure 8. In the case of
matching mentors to mentees, we are asking whether there exists a perfect matching which is a
subgraph of the original bipartite graph. A perfect matching may not always exist, see Figure 11.
For a perfect matching to exist in graph G = (V = A ∪ B, E), it must be that |A| = |B|. This is a
necessary condition, but not sufficient. A famous result known as Hall’s Marriage Theorem gives
necessary and sufficient conditions for the existence of a perfect matching in a bipartite graph. To
state this theorem precisely, we need to introduce the notion of an A-perfect matching.

Definition 6. An A-perfect matching is a bipartite graph G = (V, E) with V = A∪ B and E ⊆ {(u, v) :
u ∈ A, v ∈ B} such that for every u ∈ A, d(u) = 1, and for every v ∈ B, d(v) ≤ 1.

We also need the definition of the neighborhood of A set. This is simply the set of vertices that
are connected to the vertices of the set by edges in the graph.

Definition 7. In a bipartite graph G = (V, E) with V = A ∪ B and E ⊆ {(u, v) : u ∈ A, v ∈ B}, the
neighborhood of a set of vertices S ⊆ A is defined as N(S) = {v ∈ B : ∃u ∈ S. {u, v} ∈ E}.
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Figure 8: A bipartite
graph.

Figure 9: One perfect
matching.

Figure 10: Another perfect
matching.

Figure 11: Bipartite graph with no perfect matching.

Theorem 4 (Hall’s Marriage Theorem (1935)). A bipartite graph G = (A ∪ B, E) has an A-perfect
matching if and only if for any subset S of A (S ⊆ A), the total number of vertices in the neighborhood of S
is at least the number of vertices in S, i.e.,

∀S ⊆ A. |N(S)| ≥ |S|.

Figure 12: A bipartite graph. Figure 13: A perfect matching of the graph
in Figure 12 highlighted in red.

5 Summary

In this lecture, we introduced notation and basic properties of graphs. We introduced special
types of graphs, including the empty graph, complete graph, and cycle graph. Finally, we studied
bipartite graphs and considered matchings in this context.
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