COMPSCI 230: Discrete Mathematics for Computer Science	February 6, 2019
Lecture 8	
Lecturer: Debmalya Panigrahi	Scribe: Erin Taylor

1 Overview

In this lecture, we continue studying relations and functions.

2 Relations and Functions

Recall that a relation is defined between two sets as a subset of the Cartesian product: $R \subseteq A \times B$ for sets A, B. We use the following shorthand:

- *A* bij *B* ("*A* has a bijection with *B*") if there exists a bijective total function $R \subseteq A \times B$.
- *A* surj *B* ("*A* has a surjection with *B*") if there exists a surjective total function $R \subseteq A \times B$.
- *A* inj *B* ("*A* has an injection with *B*") if there exists an injective total function $R \subseteq A \times B$.

Suppose *A* and *B* are finite sets. Then we have the following *cardinality rules*:

- 1. $A \text{ bij } B \Leftrightarrow |A| = |B|$
- 2. $A \operatorname{surj} B \Leftrightarrow |A| \geq |B|$
- 3. $A \text{ inj } B \Leftrightarrow |A| \leq |B|$

Proof of Rule 1. Suppose *A* bij *B*. This means there exists $R \subseteq A \times B$ such that *R* is a bijective total function. Since *R* is a total function, every element of *A* maps to exactly one element of *B*. Thus, the total sum of in-degrees of elements of *B* is |A|. Since *R* is a bijection, every element $b \in B$ is mapped to exactly once. In other words, each $b \in B$ has in-degree one. Equivalently, for all $b \in B$, in-degree(b) = 1. We have the following:

$$|A| = \sum_{b \in B} in\text{-degree}(b) = \sum_{b \in B} 1 = |B|$$

Thus, |A| = |B| as desired.

Proof of Rule 2. Suppose A surj B. This means there exists $R \subseteq A \times B$ such that R is a surjective total function. Since R is a total function, every element of A maps to exactly one element of B. Thus, the total sum of in-degrees of elements of B is |A|. Since R is a surjection, every element in B is either mapped to once or more than once. Equivalently, for all $b \in B$, $in\text{-}degree(b) \ge 1$. We have the following:

$$|A| = \sum_{b \in B} in\text{-degree}(b) \ge \sum_{b \in B} 1 = |B|$$

Thus, $|A| \ge |B|$ as desired.

Proof of Rule 3. Suppose A inj B. This means there exists $R \subseteq A \times B$ such that R is a injective total function. Since R is a total function, every element of A maps to exactly one element of B. Thus, the total sum of in-degrees of elements of B is |A|. Since R is a injection, every element in B is either mapped once or not at all. Equivalently, for all $b \in B$, $in\text{-degree}(b) \leq 1$. We have the following:

$$|A| = \sum_{b \in B} in\text{-degree}(b) \le \sum_{b \in B} 1 = |B|$$

Thus, $|A| \leq |B|$ as desired.

Definition 1. The inverse relation, denoted R^{-1} , of a relation R is the set of ordered pairs obtained by reversing those of R. If $R \subseteq A \times B$:

$$aR^{-1}b \Leftrightarrow bRa$$
.

Thus, $R^{-1} \subseteq B \times A$. Informally, R^{-1} is the relation obtained by changing the direction of arrows in the mapping diagram of R.

If R is a bijective total function, then R^{-1} is also a bijective total function. All out-degrees and in-degrees of R are exactly 1, so in R^{-1} the out-degrees become in-degrees, and vice versa. This leads to the following theorem:

Theorem 1. A bij B if and only if B bij A.

Proof. Suppose A bij B. By the cardinality rules, A bij B if and only if |A| = |B|. Equivalently, |B| = |A|. By the cardinality rules, |B| = |A| if and only if B bij A. In addition to existence, if we have a bijection from A to B, we can find a bijection from B to A. Let B be a bijective total function from A to B. Taking the inverse of B results in a bijective total function from B to A, as previously observed.

We present some observations when A, B are finite sets.

Observation 2. *If A surj B and B surj A, then A bij B.*

This follows from the cardinality rules: A surj B implies $|A| \ge |B|$ and B surj A implies $|B| \ge |A|$. Together, these imply |A| = |B|. From our cardinality rules we know |A| = |B| if and only if A bij B.

Observation 3. *Either A surj B or B surj A.*

This follows from the cardinality rules. For any finite sets A and B, either $|A| \le |B|$ or $|B| \le |A|$. In the first case, $|A| \le |B|$ implies B surj A and in the latter case $|B| \le |A|$ implies A surj B.

Observation 4. A surj B if and only if B inj A.

Again, we use the cardinality rules. *A* surj *B* if and only if $|A| \ge |B|$. We know $|B| \le |A|$ if and only if *B* inj *A*.

3 Properties of Relations on a Set

We say *R* is defined on set *A* if $R \subseteq A \times A$.

Example 1: Consider the set of positive integers, \mathbb{Z}^+ . We can use comparators (such as <, \leq , =, \geq , >) to define relations on this set. Consider defining a relation using \leq . This means $(a,b) \in R \Leftrightarrow a \leq b$. For example, the pair $(3,5) \in R$ since $3 \leq 5$, but $(5,3) \notin R$ because $5 \nleq 3$.

Example 2: Consider relation R defined by < on \mathbb{Z}^+ .

Total? Yes, $\forall x \in \mathbb{Z}^+ \ x < x+1 \Rightarrow (x,x+1) \in R$.

Function? No, 3 < 4, 3 < 5, 3 < 6, etc. An out-degree of an element could be larger than 1.

Injective? No, 1 < 5, 2 < 5, 3 < 5, 4 < 5. The in-degree of an element could be larger than 1.

Surjective? No, there is no positive integer less than 1 so $(x, 1) \notin R$.

We introduce new properties of relations defined when the domain and codomain are the same set.

Definition 2. A relation R on set A is reflexive when every element is related to itself. Formally,

$$aRa \ \forall a \in A.$$

Definition 3. A relation R on set A is symmetric when a relates to b if and only if b relates to a. In other words,

$$aRb \Leftrightarrow bRa \ \forall a,b \in A.$$

Definition 4. A relation R on set A is transitive if for every pair (a,b) if b also relates to some element c, then a must also relate to c. Formally,

$$aRb \wedge bRc \Rightarrow aRc \ \forall a,b,c \in A.$$

Lemma 5. Consider a relation R defined on set A. Suppose $\forall a \in A$, $\exists b \in A \text{ s.t. } aRb$. If R is both symmetric and transitive, then R is reflexive.

Proof. Consider $a, b \in A$ such that $(a, b) \in R$. If b = a, we are done. Otherwise, by symmetry $(b, a) \in R$. By transitivity, since aRb and bRa, it must be that aRa. Since this holds for all $a \in A$, the relation is reflexive.

Definition 5. A relation R is irreflexive when no element a relates to itself. Formally,

$$(a,a) \notin R \ \forall a \in A.$$

Note that a relation may be neither irreflexive nor reflexive.

Example 3: Suppose $A = \{1,2\}$. Then $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$. Consider the following relations:

$$R_1 = \{(1,2),(2,1)\}$$
 irreflexive since $(1,1),(2,2) \notin R_1$ $R_2 = \emptyset$ irreflexive since $(1,1),(2,2) \notin R_2$ $R_3 = \{(1,1),(1,2),(2,2),(2,1)\}$ reflexive since $(1,1),(2,2) \in R_3$ neither reflexive nor irreflexive

 R_4 is not reflexive because $(2,2) \notin R_4$. It is also not irreflexive because $(1,1) \in R_4$.

Definition 6. A relation R is asymmetric iff

$$(a,b) \in R \Rightarrow (b,a) \notin R \ \forall a,b \in A.$$

Notice that if a relation is asymmetric it cannot contain pairs of the form (a, a) for any $a \in A$. Thus, if a relation is asymmetric then it is also irreflexive. Also notice that the only relation that is both symmetric and asymmetric is the empty set.

Example 4: Suppose $\mathbb{F}_2 = \{0,1\}$. Then $\mathbb{F}_2 \times \mathbb{F}_2 = \{(0,0),(0,1),(1,0),(1,1)\}$. Consider the following relations:

$$R_1 = \{(0,0)\}$$
 symmetric, transitive $R_2 = \emptyset$ symmetric, asymmetric, transitive $R_3 = \{((0,0),(0,1),(1,0),(1,1)\}$ symmetric, transitive $R_4 = \{(1,1),(0,0)(1,0)\}$ transitive

In R_2 , there are no pairs (a,b) in the relation for which we need to check the implications for symmetry, asymmetry, or transitivity. Recall that for a proposition $P \Rightarrow Q$, if P is false, then the implication is true. Notice that R_2 is not reflexive, since $(0,0),(1,1) \notin R_2$. Relation R_3 is the entire Cartesian product. Thus, it is symmetric and transitive since every possible pair is present. Relation R_4 is not symmetric, as $(1,0) \in R_4$, but $(0,1) \notin R_4$. It is also not asymmetric, as it has pairs (0,0) and (1,1). To establish that R_4 is transitive, consider (1,1) and (1,0). Transitivity implies that $(1,0) \in R_4$, which is true. Also consider (1,0) and (0,0); we have that $(1,0) \in R_4$. Thus, for any pairs of the form $(a,b),(b,c) \in R_4$ we know that $(a,c) \in R_4$ as well.

Asymmetry is a strong condition; it does not allow any pairs of the form (a, a) in the relation. A slightly weaker, but similar condition is anti-symmetry.

Definition 7. A relation R is anti-symmetric iff

$$(a,b) \in R$$
 and $a \neq b \Rightarrow (b,a) \notin R \ \forall a,b \in A$.

Any relation which is asymmetric is also anti-symmetric. For example, a relation defined by < on the positive integers is both asymmetric and anti-symmetric. However, \le is not asymmetric, but it is anti-symmetric. We see this by observing that for any positive integer x, we have $x \le x$ but $x \ne x$.

4 Summary

In this lecture, we used cardinality rules to prove theorems about relations defined on finite sets. We also considered the inverse relation. Finally, we studied relations defined on a set, and learned the rules for reflexivity, irreflexivity, symmetry, asymmetry, anti-symmetry, and transitivity.