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1 Overview

In this lecture, we continue studying relations and functions.

2 Relations and Functions

Recall that a relation is defined between two sets as a subset of the Cartesian product: R ⊆ A× B
for sets A, B. We use the following shorthand:

• A bij B (“A has a bijection with B”) if there exists a bijective total function R ⊆ A× B.

• A surj B (“A has a surjection with B”) if there exists a surjective total function R ⊆ A× B.

• A inj B (“A has an injection with B”) if there exists an injective total function R ⊆ A× B.

Suppose A and B are finite sets. Then we have the following cardinality rules:

1. A bij B⇔ |A| = |B|

2. A surj B⇔ |A| ≥ |B|

3. A inj B⇔ |A| ≤ |B|

Proof of Rule 1. Suppose A bij B. This means there exists R ⊆ A× B such that R is a bijective total
function. Since R is a total function, every element of A maps to exactly one element of B. Thus,
the total sum of in-degrees of elements of B is |A|. Since R is a bijection, every element b ∈ B
is mapped to exactly once. In other words, each b ∈ B has in-degree one. Equivalently, for all
b ∈ B, in-degree(b) = 1. We have the following:

|A| = ∑
b∈B

in-degree(b) = ∑
b∈B

1 = |B|

Thus, |A| = |B| as desired.

Proof of Rule 2. Suppose A surj B. This means there exists R ⊆ A× B such that R is a surjective
total function. Since R is a total function, every element of A maps to exactly one element of B.
Thus, the total sum of in-degrees of elements of B is |A|. Since R is a surjection, every element in B
is either mapped to once or more than once. Equivalently, for all b ∈ B, in-degree(b) ≥ 1. We have
the following:

|A| = ∑
b∈B

in-degree(b) ≥ ∑
b∈B

1 = |B|

Thus, |A| ≥ |B| as desired.
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Proof of Rule 3. Suppose A inj B. This means there exists R ⊆ A× B such that R is a injective total
function. Since R is a total function, every element of A maps to exactly one element of B. Thus, the
total sum of in-degrees of elements of B is |A|. Since R is a injection, every element in B is either
mapped once or not at all. Equivalently, for all b ∈ B, in-degree(b) ≤ 1. We have the following:

|A| = ∑
b∈B

in-degree(b) ≤ ∑
b∈B

1 = |B|

Thus, |A| ≤ |B| as desired.

Definition 1. The inverse relation, denoted R−1, of a relation R is the set of ordered pairs obtained by
reversing those of R. If R ⊆ A× B:

aR−1b⇔ bRa.

Thus, R−1 ⊆ B× A. Informally, R−1 is the relation obtained by changing the direction of arrows in the
mapping diagram of R.

If R is a bijective total function, then R−1 is also a bijective total function. All out-degrees and
in-degrees of R are exactly 1, so in R−1 the out-degrees become in-degrees, and vice versa. This
leads to the following theorem:

Theorem 1. A bij B if and only if B bij A.

Proof. Suppose A bij B. By the cardinality rules, A bij B if and only if |A| = |B|. Equivalently,
|B| = |A|. By the cardinality rules, |B| = |A| if and only if B bij A. In addition to existence, if we
have a bijection from A to B, we can find a bijection from B to A. Let R be a bijective total function
from A to B. Taking the inverse of R results in a bijective total function from B to A, as previously
observed.

We present some observations when A, B are finite sets.

Observation 2. If A surj B and B surj A, then A bij B.

This follows from the cardinality rules: A surj B implies |A| ≥ |B| and B surj A implies |B| ≥ |A|.
Together, these imply |A| = |B|. From our cardinality rules we know |A| = |B| if and only if A bij
B.

Observation 3. Either A surj B or B surj A.

This follows from the cardinality rules. For any finite sets A and B, either |A| ≤ |B| or |B| ≤ |A|.
In the first case, |A| ≤ |B| implies B surj A and in the latter case |B| ≤ |A| implies A surj B.

Observation 4. A surj B if and only if B inj A.

Again, we use the cardinality rules. A surj B if and only if |A| ≥ |B|. We know |B| ≤ |A| if and
only if B inj A.
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3 Properties of Relations on a Set

We say R is defined on set A if R ⊆ A× A.

Example 1: Consider the set of positive integers, Z+. We can use comparators (such as <, ≤
, =, ≥, >) to define relations on this set. Consider defining a relation using ≤. This means
(a, b) ∈ R ⇔ a ≤ b. For example, the pair (3, 5) ∈ R since 3 ≤ 5, but (5, 3) 6∈ R because 5 6� 3.

Example 2: Consider relation R defined by < on Z+.

Total? Yes, ∀x ∈ Z+ x < x + 1⇒ (x, x + 1) ∈ R.
Function? No, 3 < 4, 3 < 5, 3 < 6, etc. An out-degree of an element could be larger than 1.
Injective? No, 1 < 5, 2 < 5, 3 < 5, 4 < 5. The in-degree of an element could be larger than 1.
Surjective? No, there is no positive integer less than 1 so (x, 1) 6∈ R.

We introduce new properties of relations defined when the domain and codomain are the same
set.

Definition 2. A relation R on set A is reflexive when every element is related to itself. Formally,

aRa ∀a ∈ A.

Definition 3. A relation R on set A is symmetric when a relates to b if and only if b relates to a. In other
words,

aRb ⇔ bRa ∀a, b ∈ A.

Definition 4. A relation R on set A is transitive if for every pair (a, b) if b also relates to some element c,
then a must also relate to c. Formally,

aRb ∧ bRc⇒ aRc ∀a, b, c ∈ A.

Lemma 5. Consider a relation R defined on set A. Suppose ∀a ∈ A, ∃b ∈ A s.t. aRb. If R is both
symmetric and transitive, then R is reflexive.

Proof. Consider a, b ∈ A such that (a, b) ∈ R. If b = a, we are done. Otherwise, by symmetry
(b, a) ∈ R. By transitivity, since aRb and bRa, it must be that aRa. Since this holds for all a ∈ A, the
relation is reflexive.

Definition 5. A relation R is irreflexive when no element a relates to itself. Formally,

(a, a) 6∈ R ∀a ∈ A.

Note that a relation may be neither irreflexive nor reflexive.

Example 3: Suppose A = {1, 2}. Then A× A = {(1, 1), (1, 2), (2, 1), (2, 2)}. Consider the following
relations:

R1 = {(1, 2), (2, 1)} irreflexive since (1, 1), (2, 2) 6∈ R1
R2 = ∅ irreflexive since (1, 1), (2, 2) 6∈ R2
R3 = {(1, 1), (1, 2), (2, 2), (2, 1)} reflexive since (1, 1), (2, 2) ∈ R3
R4 = {(1, 1)} neither reflexive nor irreflexive

R4 is not reflexive because (2, 2) 6∈ R4. It is also not irreflexive because (1, 1) ∈ R4.
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Definition 6. A relation R is asymmetric iff

(a, b) ∈ R⇒ (b, a) 6∈ R ∀a, b ∈ A.

Notice that if a relation is asymmetric it cannot contain pairs of the form (a, a) for any a ∈ A.
Thus, if a relation is asymmetric then it is also irreflexive. Also notice that the only relation that is
both symmetric and asymmetric is the empty set.

Example 4: Suppose F2 = {0, 1}. Then F2 × F2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Consider the
following relations:

R1 = {(0, 0)} symmetric, transitive
R2 = ∅ symmetric, asymmetric, transitive
R3 = {((0, 0), (0, 1), (1, 0), (1, 1)} symmetric, transitive
R4 = {(1, 1), (0, 0)(1, 0)} transitive

In R2, there are no pairs (a, b) in the relation for which we need to check the implications for
symmetry, asymmetry, or transitivity. Recall that for a proposition P ⇒ Q, if P is false, then the
implication is true. Notice that R2 is not reflexive, since (0, 0), (1, 1) 6∈ R2. Relation R3 is the entire
Cartesian product. Thus, it is symmetric and transitive since every possible pair is present. Relation
R4 is not symmetric, as (1, 0) ∈ R4, but (0, 1) 6∈ R4. It is also not asymmetric, as it has pairs (0, 0)
and (1, 1). To establish that R4 is transitive, consider (1, 1) and (1, 0). Transitivity implies that
(1, 0) ∈ R4, which is true. Also consider (1, 0) and (0, 0); we have that (1, 0) ∈ R4. Thus, for any
pairs of the form (a, b), (b, c) ∈ R4 we know that (a, c) ∈ R4 as well.

Asymmetry is a strong condition; it does not allow any pairs of the form (a, a) in the relation. A
slightly weaker, but similar condition is anti-symmetry.

Definition 7. A relation R is anti-symmetric iff

(a, b) ∈ R and a 6= b⇒ (b, a) 6∈ R ∀a, b ∈ A.

Any relation which is asymmetric is also anti-symmetric. For example, a relation defined by <
on the positive integers is both asymmetric and anti-symmetric. However, ≤ is not asymmetric,
but it is anti-symmetric. We see this by observing that for any positive integer x, we have x ≤ x but
x ≮ x.

4 Summary

In this lecture, we used cardinality rules to prove theorems about relations defined on finite sets.
We also considered the inverse relation. Finally, we studied relations defined on a set, and learned
the rules for reflexivity, irreflexivity, symmetry, asymmetry, anti-symmetry, and transitivity.
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