
Bayesian networks

Instructor: Vincent Conitzer



Rain and sprinklers example

raining (X) sprinklers (Y)

grass wet (Z)

P(Z=1 | X=0, Y=0) = .1

P(Z=1 | X=0, Y=1) = .8

P(Z=1 | X=1, Y=0) = .7

P(Z=1 | X=1, Y=1) = .9

P(X=1) = .3 P(Y=1) = .4

Each node has a 

conditional 

probability table 

(CPT)



Rigged casino example

casino rigged

die 1 die 2

P(CR=1) = 1/2

P(D1=1|CR=0) = 1/6

…

P(D1=5|CR=0) = 1/6

P(D1=1|CR=1) = 3/12

…

P(D1=5|CR=1) = 1/6

P(D2=1|CR=0) = 1/6

…

P(D2=5|CR=0) = 1/6

P(D2=1|CR=1) = 3/12

…

P(D2=5|CR=1) = 1/6



More elaborate rain and 

sprinklers example

rained
sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

P(+r) = .2

P(+n|+r) = .3

P(+n|-r) = .4

P(+s) = .6

P(+g|+r,+s) = .9

P(+g|+r,-s) = .7

P(+g|-r,+s) = .8

P(+g|-r,-s) = .2

P(+d|+n,+g) = .9

P(+d|+n,-g) = .4

P(+d|-n,+g) = .5

P(+d|-n,-g) = .3



Specifying probability distributions
• Specifying a probability for every atomic event is 

impractical

• P(X1, …, Xn) would need to be specified for every 

combination x1, …, xn of values for X1, …, Xn

– If there are k possible values per variable…

– … we need to specify kn - 1 probabilities!

• We have already seen it can be easier to specify probability 

distributions by using (conditional) independence

• Bayesian networks allow us 

– to specify any distribution,

– to specify such distributions concisely if there is 

(conditional) independence, in a natural way



A general approach to specifying 

probability distributions
• Say the variables are X1, …, Xn

• P(X1, …, Xn) = P(X1)P(X2|X1)P(X3|X1,X2)…P(Xn|X1, …, Xn-1)

• or:

• P(X1, …, Xn) = P(Xn)P(Xn-1|Xn)P(Xn-2|Xn,Xn-1)…P(X1|Xn, …, X2)

• Can specify every component

– For every combination of values for the variables on the right of |, 

specify the probability over the values for the variable on the left

• If every variable can take k values, 

• P(Xi|X1, …, Xi-1) requires (k-1)ki-1 values

• Σi={1,..,n}(k-1)ki-1 = Σi={1,..,n}k
i-ki-1 = kn - 1

• Same as specifying probabilities of all atomic events – of 

course, because we can specify any distribution!



Graphically representing influences

X1 X2

X3

X4



Conditional independence to 

the rescue!
• Problem: P(Xi|X1, …, Xi-1) requires us to 

specify too many values

• Suppose X1, …, Xi-1 partition into two 

subsets, S and T, so that Xi is conditionally 

independent from T given S

• P(Xi|X1, …, Xi-1) = P(Xi|S, T) = P(Xi|S)

• Requires only (k-1)k|S| values instead of (k-

1)ki-1 values



Graphically representing influences

X1 X2

X3

X4

• … if X4 is conditionally independent from X2

given X1 and X3



Rain and sprinklers example

raining (X) sprinklers (Y)

grass wet (Z)

P(Z=1 | X=0, Y=0) = .1

P(Z=1 | X=0, Y=1) = .8

P(Z=1 | X=1, Y=0) = .7

P(Z=1 | X=1, Y=1) = .9

P(X=1) = .3 P(Y=1) = .4

sprinklers is independent of raining, so no 

edge between them



Rigged casino example

casino rigged

die 1 die 2

die 2 is conditionally independent of die 1 given 

casino rigged, so no edge between them

P(CR=1) = 1/2

P(D1=1|CR=0) = 1/6

…

P(D1=5|CR=0) = 1/6

P(D1=1|CR=1) = 3/12

…

P(D1=5|CR=1) = 1/6

P(D2=1|CR=0) = 1/6

…

P(D2=5|CR=0) = 1/6

P(D2=1|CR=1) = 3/12

…

P(D2=5|CR=1) = 1/6



Rigged casino example with 

poorly chosen order

casino rigged

die 1 die 2

die 1 and die 2 are not 

independent 

both the dice have relevant 

information for whether the 

casino is rigged need 36 probabilities here!



More elaborate rain and 

sprinklers example

rained
sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

P(+r) = .2

P(+n|+r) = .3

P(+n|-r) = .4

P(+s) = .6

P(+g|+r,+s) = .9

P(+g|+r,-s) = .7

P(+g|-r,+s) = .8

P(+g|-r,-s) = .2

P(+d|+n,+g) = .9

P(+d|+n,-g) = .4

P(+d|-n,+g) = .5

P(+d|-n,-g) = .3



Atomic events
rained

sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

P(+r) = .2

P(+n|+r) = .3

P(+n|-r) = .4

P(+s) = .6

P(+g|+r,+s) = .9

P(+g|+r,-s) = .7

P(+g|-r,+s) = .8

P(+g|-r,-s) = .2

P(+d|+n,+g) = .9

P(+d|+n,-g) = .4

P(+d|-n,+g) = .5

P(+d|-n,-g) = .3

• Can easily calculate the probability of any atomic event

• P(+r,+s,+n,+g,+d) = P(+r)P(+s)P(+n|+r)P(+g|+r,+s)P(+d|+n,+g)

• Can also sample atomic events easily



Inference

• Want to know: P(+r|+d) = P(+r,+d)/P(+d)

• Let’s compute P(+r,+d)

rained
sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

P(+r) = .2

P(+n|+r) = .3

P(+n|-r) = .4

P(+s) = .6

P(+g|+r,+s) = .9

P(+g|+r,-s) = .7

P(+g|-r,+s) = .8

P(+g|-r,-s) = .2

P(+d|+n,+g) = .9

P(+d|+n,-g) = .4

P(+d|-n,+g) = .5

P(+d|-n,-g) = .3



Inference…

• P(+r,+d)= ΣsΣgΣn P(+r)P(s)P(n|+r)P(g|+r,s)P(+d|n,g) = 

P(+r)ΣsP(s)ΣgP(g|+r,s)Σn P(n|+r)P(+d|n,g)

rained
sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

P(+r) = .2

P(+n|+r) = .3

P(+n|-r) = .4

P(+s) = .6

P(+g|+r,+s) = .9

P(+g|+r,-s) = .7

P(+g|-r,+s) = .8

P(+g|-r,-s) = .2

P(+d|+n,+g) = .9

P(+d|+n,-g) = .4

P(+d|-n,+g) = .5

P(+d|-n,-g) = .3



Variable elimination

• From the factor Σn P(n|+r)P(+d|n,g) we sum out n to obtain a factor only depending on g

• [Σn P(n|+r)P(+d|n,+g)] = P(+n|+r)P(+d|+n,+g) + P(-n|+r)P(+d|-n,+g) = .3*.9+.7*.5 = .62

• [Σn P(n|+r)P(+d|n,-g)] = P(+n|+r)P(+d|+n,-g) + P(-n|+r)P(+d|-n,-g) = .3*.4+.7*.3 = .33

• Continuing to the left, g will be summed out next, etc. (continued on board) 

rained
sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

P(+r) = .2

P(+n|+r) = .3

P(+n|-r) = .4

P(+s) = .6

P(+g|+r,+s) = .9

P(+g|+r,-s) = .7

P(+g|-r,+s) = .8

P(+g|-r,-s) = .2

P(+d|+n,+g) = .9

P(+d|+n,-g) = .4

P(+d|-n,+g) = .5

P(+d|-n,-g) = .3



Elimination order matters

• P(+r,+d)= ΣnΣsΣg P(+r)P(s)P(n|+r)P(g|+r,s)P(+d|n,g) = 

P(+r)ΣnP(n|+r)ΣsP(s)Σg P(g|+r,s)P(+d|n,g)

• Last factor will depend on two variables in this case!

rained
sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

P(+r) = .2

P(+n|+r) = .3

P(+n|-r) = .4

P(+s) = .6

P(+g|+r,+s) = .9

P(+g|+r,-s) = .7

P(+g|-r,+s) = .8

P(+g|-r,-s) = .2

P(+d|+n,+g) = .9

P(+d|+n,-g) = .4

P(+d|-n,+g) = .5

P(+d|-n,-g) = .3



Don’t always need to sum over all variables

• Can drop parts of the network that are irrelevant

• P(+r, +s) = P(+r)P(+s) = .6*.2 = .12

• P(+n, +s) = ΣrP(r, +n, +s) = ΣrP(r)P(+n|r)P(+s) = P(+s)ΣrP(r)P(+n|r) = 

P(+s)(P(+r)P(+n|+r) + P(-r)P(+n|-r)) = .6*(.2*.3 + .8*.4)  = .6*.38 = .228

• P(+d | +n, +g, +s) = P(+d | +n, +g) = .9

rained
sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

P(+r) = .2

P(+n|+r) = .3

P(+n|-r) = .4

P(+s) = .6

P(+g|+r,+s) = .9

P(+g|+r,-s) = .7

P(+g|-r,+s) = .8

P(+g|-r,-s) = .2

P(+d|+n,+g) = .9

P(+d|+n,-g) = .4

P(+d|-n,+g) = .5

P(+d|-n,-g) = .3



Trees are easy

• Choose an extreme variable to eliminate first

• Its probability is “absorbed” by its neighbor

• …Σx4
P(x4|x1,x2)…Σx5

P(x5|x4) = …Σx4
P(x4|x1,x2)[Σx5

P(x5|x4)]… 

X1 X2 X3

X4

X6X5

X7 X8



Clustering algorithms

• Merge nodes into “meganodes” until we have a tree

– Then, can apply special-purpose algorithm for trees

• Merged node has values {+n+g,+n-g,-n+g,-n-g}

– Much larger CPT

rained
sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

rained
sprinklers 

were on

neighbor walked 

dog, grass wet

dog wet



Logic gates in Bayes nets

• Not everything needs to be random…

X1 X2

Y P(+y|+x1,+x2) = 1

P(+y|-x1,+x2) = 0

P(+y|+x1,-x2) = 0

P(+y|-x1,-x2) = 0

X1 X2

Y P(+y|+x1,+x2) = 1

P(+y|-x1,+x2) = 1

P(+y|+x1,-x2) = 1

P(+y|-x1,-x2) = 0

AND gate OR gate



Modeling satisfiability as a Bayes Net
• (+X1 OR -X2) AND (-X1 OR -X2 OR -X3)

P(+c1|+x1,+x2) = 1

P(+c1|-x1,+x2) = 0

P(+c1|+x1,-x2) = 1

P(+c1|-x1,-x2) = 1

X1 X2 X3

C1 P(+y|+x1,+x2) = 0

P(+y|-x1,+x2) = 1

P(+y|+x1,-x2) = 1

P(+y|-x1,-x2) = 1

Y = -X1 OR -X2 

C2

P(+c2|+y,+x3) = 1

P(+c2|-y,+x3) = 0

P(+c2|+y,-x3) = 1

P(+c2|-y,-x3) = 1

formula
P(+f|+c1,+c2) = 1

P(+f|-c1,+c2) = 0

P(+f|+c1,-c2) = 0

P(+f|-c1,-c2) = 0

P(+x1) = ½ P(+x2) = ½ P(+x3) = ½ 

• P(+f) > 0 iff formula is satisfiable, so inference is NP-hard

• P(+f) = (#satisfying assignments/2n), so inference is #P-hard 

(because counting number of satisfying assignments is)



More about conditional independence
• A node is conditionally independent of its non-descendants, given its 

parents

• A node is conditionally independent of everything else in the graph, 

given its parents, children, and children’s parents (its Markov blanket)

rained
sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

• N is independent of G 

given R

• N is not independent 

of G given R and D

• N is independent of S 

given R, G, D

Note: can’t know for sure that two 

nodes are not independent: edges 

may be dummy edges



General criterion: d-separation
• Sets of variables X and Y are conditionally independent given 

variables in Z if all paths between X and Y are blocked; a path is 

blocked if one of the following holds:

– it contains U -> V -> W or U <- V <- W or U <- V -> W, and V is in Z

– it contains U -> V <- W, and neither V nor any of its descendants are in Z

rained
sprinklers 

were on

grass wet

dog wet

neighbor 

walked dog

• N is independent of G 

given R 

• N is not independent 

of S given R and D


