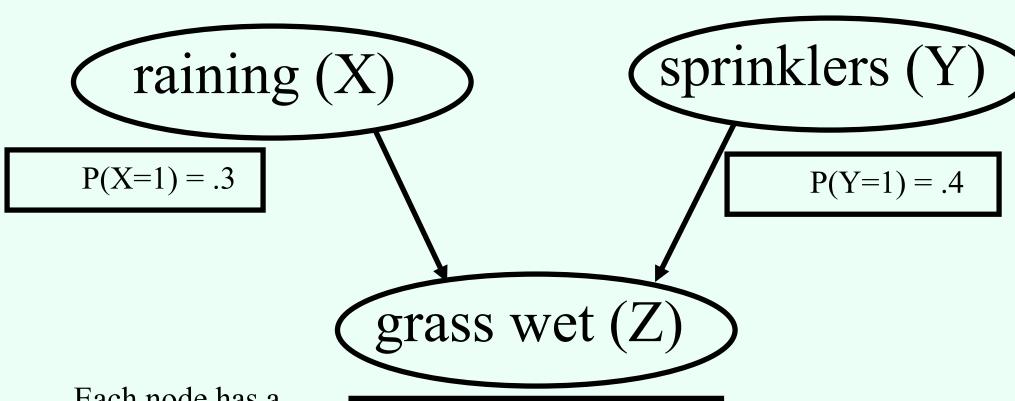
Bayesian networks

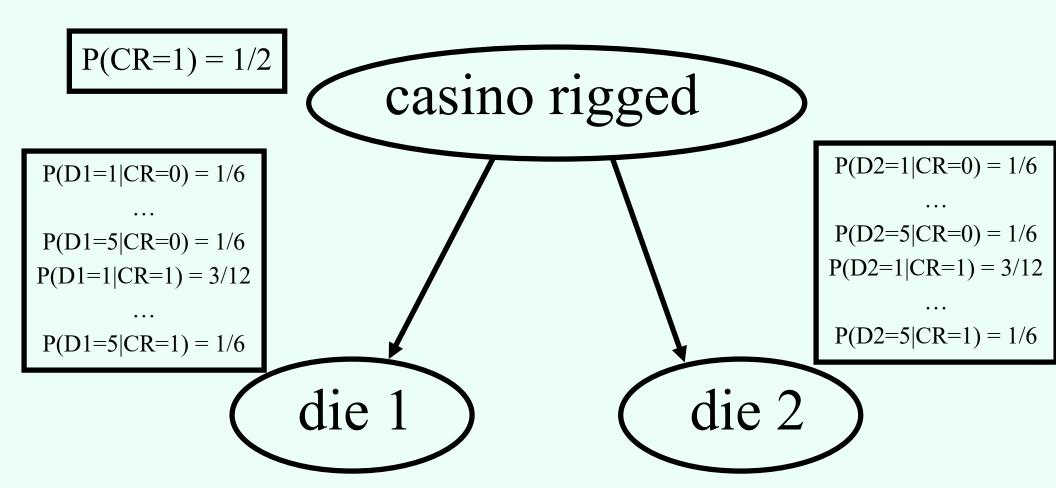
Instructor: Vincent Conitzer

Rain and sprinklers example

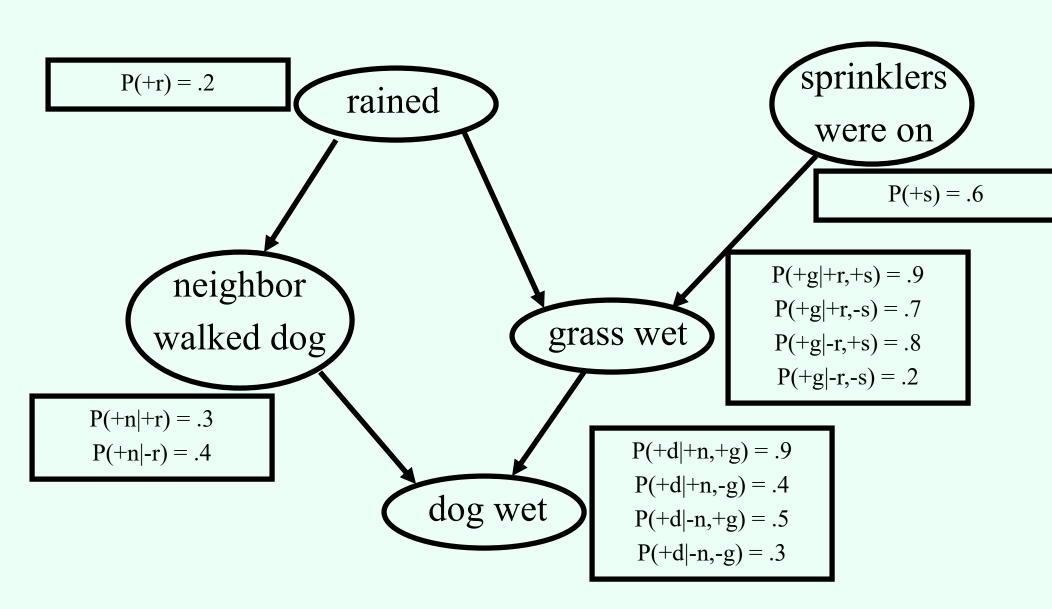


Each node has a conditional probability table (CPT)

Rigged casino example



More elaborate rain and sprinklers example



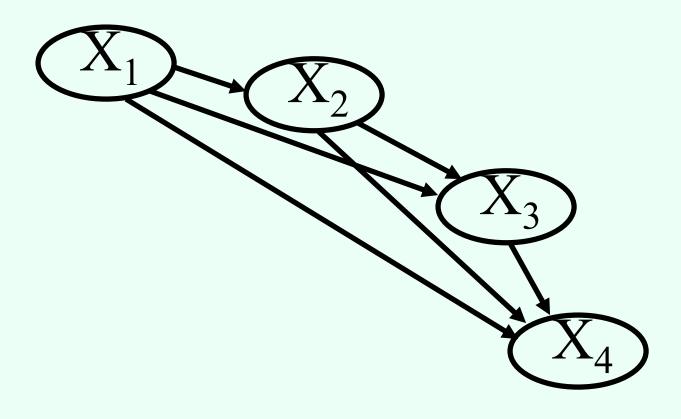
Specifying probability distributions

- Specifying a probability for every atomic event is impractical
- $P(X_1, ..., X_n)$ would need to be specified for **every** combination $x_1, ..., x_n$ of values for $X_1, ..., X_n$
 - If there are k possible values per variable...
 - ... we need to specify kⁿ 1 probabilities!
- We have already seen it can be easier to specify probability distributions by using (conditional) independence
- Bayesian networks allow us
 - to specify any distribution,
 - to specify such distributions concisely if there is (conditional) independence, in a natural way

A general approach to specifying probability distributions

- Say the variables are X₁, ..., X_n
- $P(X_1, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)...P(X_n|X_1, ..., X_{n-1})$
- or:
- $P(X_1, ..., X_n) = P(X_n)P(X_{n-1}|X_n)P(X_{n-2}|X_n, X_{n-1})...P(X_1|X_n, ..., X_2)$
- Can specify every component
 - For every combination of values for the variables on the right of |,
 specify the probability over the values for the variable on the left
- If every variable can take k values,
- P(X_i|X₁, ..., X_{i-1}) requires (k-1)kⁱ⁻¹ values
- $\Sigma_{i=\{1,...,n\}}(k-1)k^{i-1} = \Sigma_{i=\{1,...,n\}}k^i-k^{i-1} = k^n-1$
- Same as specifying probabilities of all atomic events of course, because we can specify any distribution!

Graphically representing influences

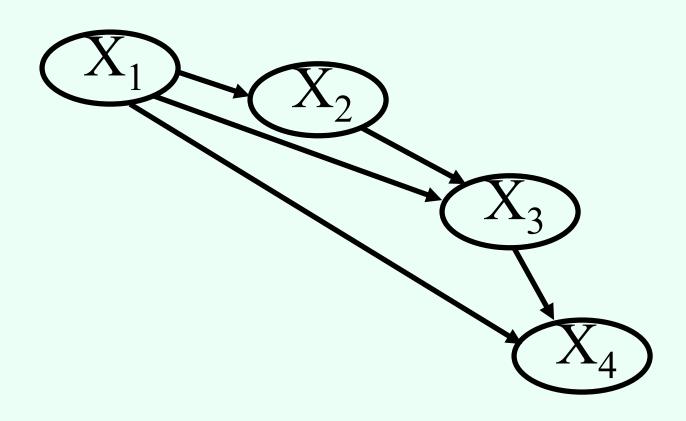


Conditional independence to the rescue!

- Problem: $P(X_i|X_1, ..., X_{i-1})$ requires us to specify too many values
- Suppose X₁, ..., X_{i-1} partition into two subsets, S and T, so that X_i is conditionally independent from T given S
- $P(X_i|X_1, ..., X_{i-1}) = P(X_i|S, T) = P(X_i|S)$
- Requires only (k-1)k^{|S|} values instead of (k-1)kⁱ⁻¹ values

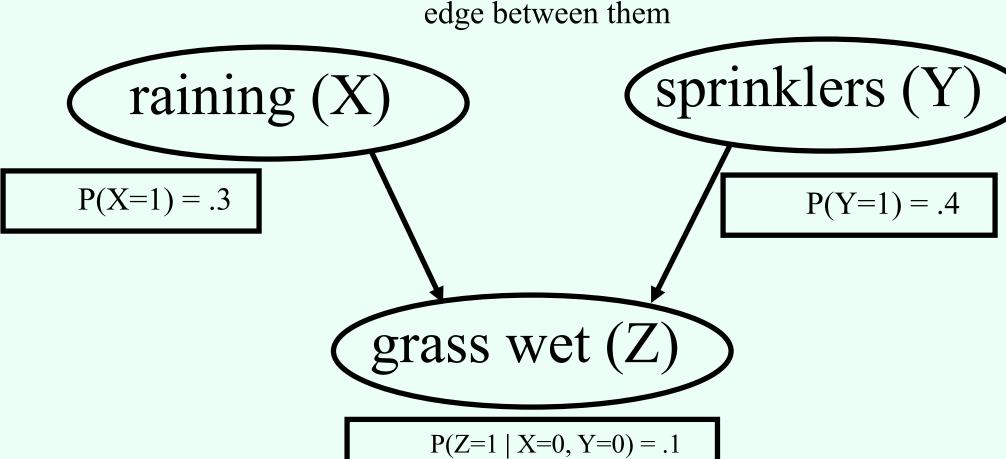
Graphically representing influences

if X₄ is conditionally independent from X₂
 given X₁ and X₃



Rain and sprinklers example

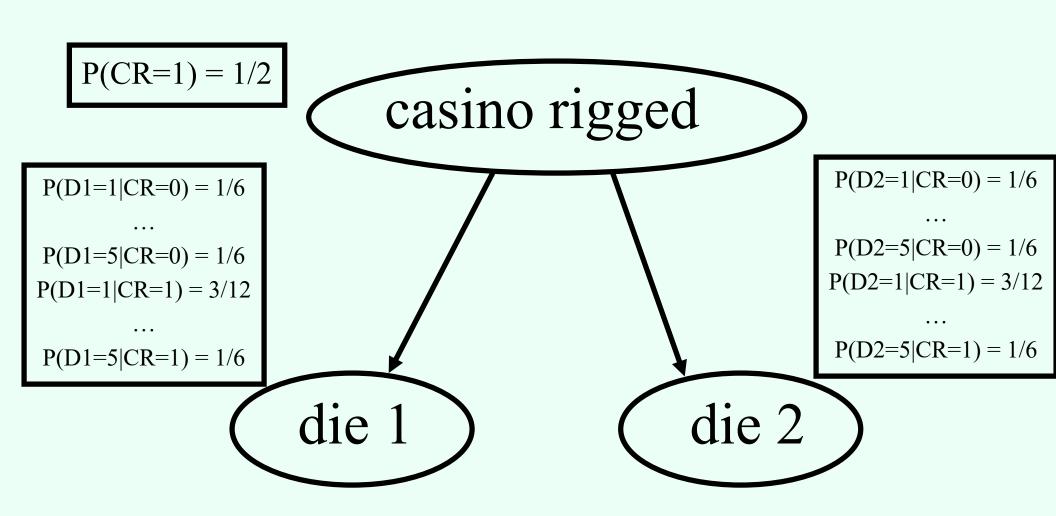
sprinklers is independent of raining, so no edge between them



$$P(Z=1 | X=0, Y=0) = .1$$

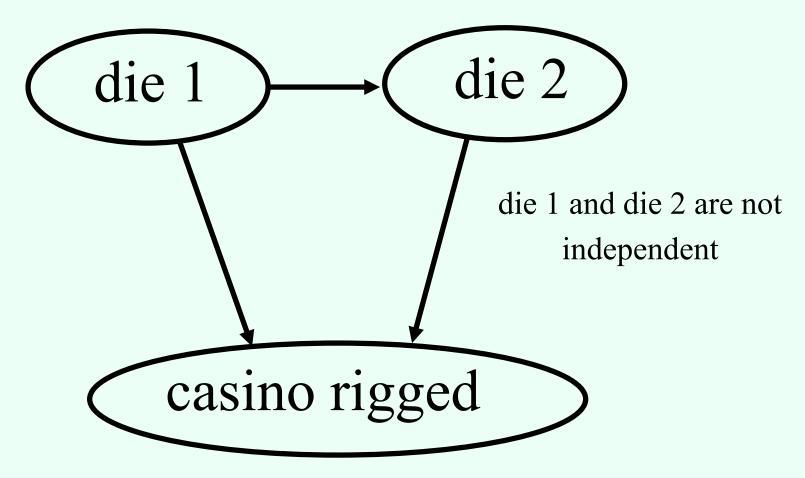
 $P(Z=1 | X=0, Y=1) = .8$
 $P(Z=1 | X=1, Y=0) = .7$
 $P(Z=1 | X=1, Y=1) = .9$

Rigged casino example



die 2 is conditionally independent of die 1 given casino rigged, so no edge between them

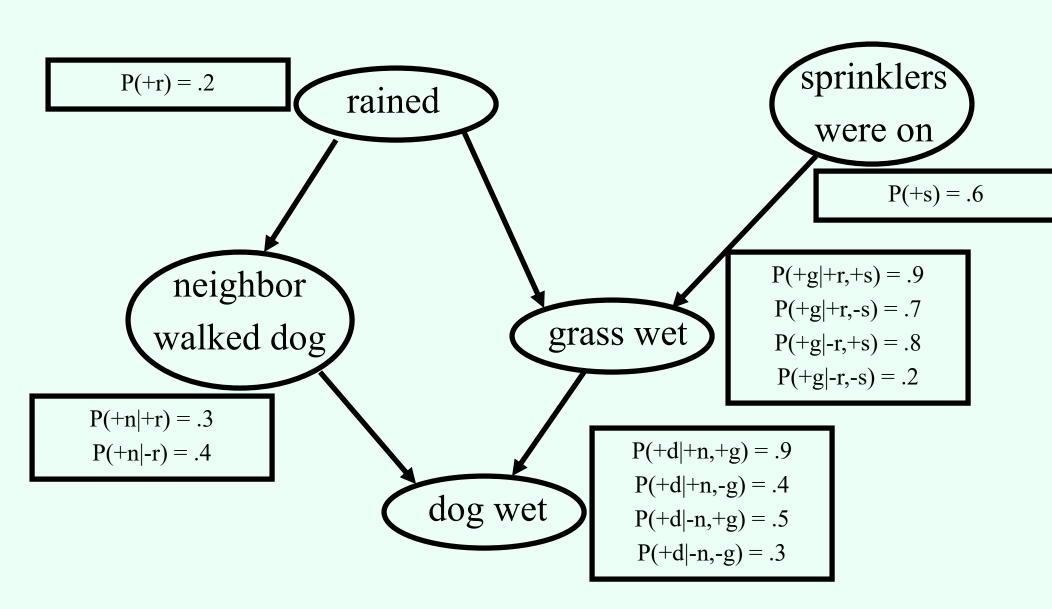
Rigged casino example with poorly chosen order

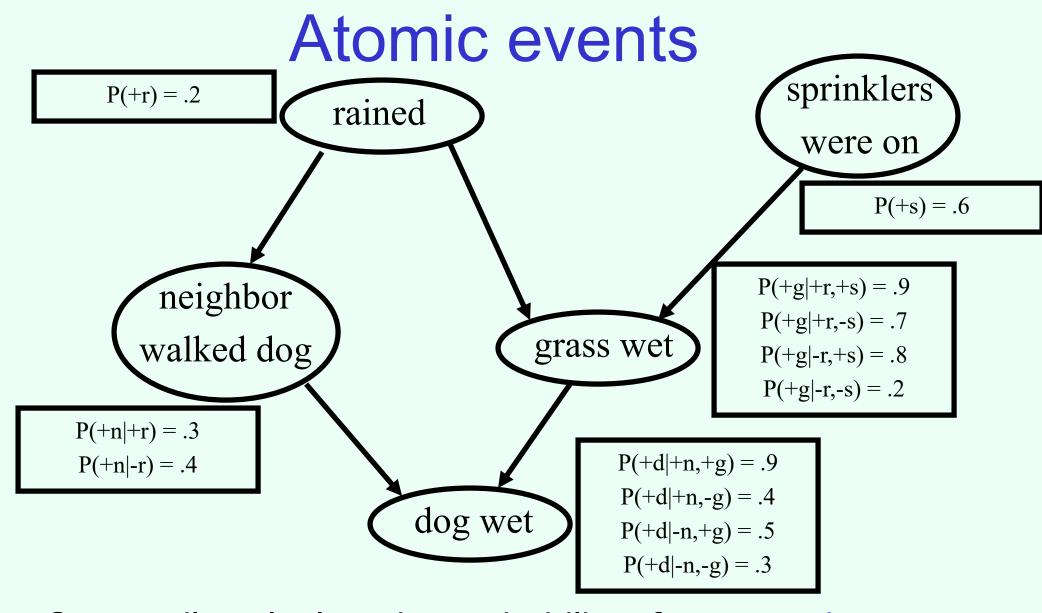


both the dice have relevant information for whether the casino is rigged

need 36 probabilities here!

More elaborate rain and sprinklers example

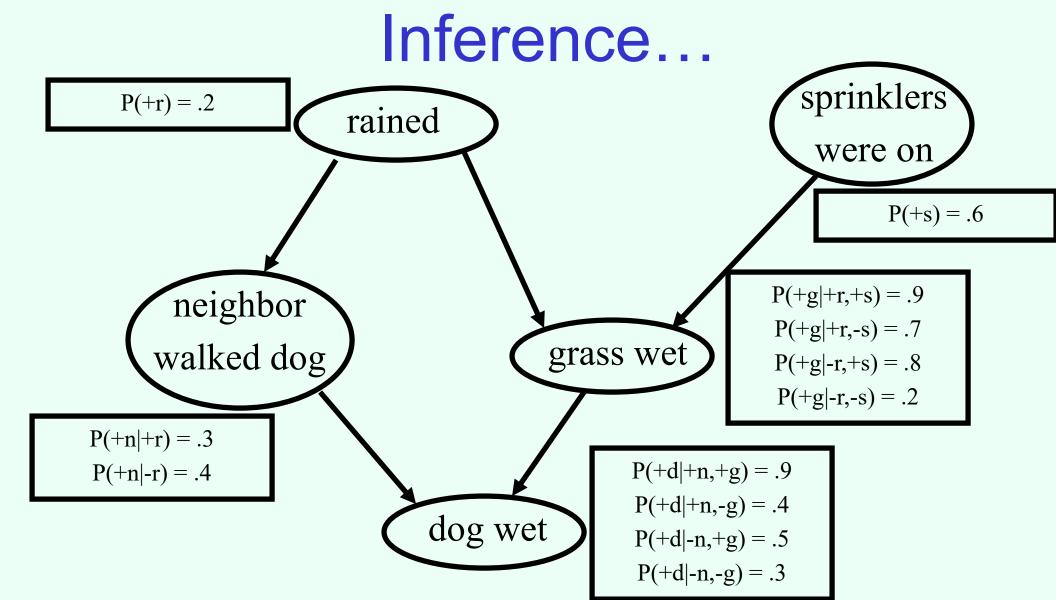




- Can easily calculate the probability of any atomic event
- P(+r,+s,+n,+g,+d) = P(+r)P(+s)P(+n|+r)P(+g|+r,+s)P(+d|+n,+g)
- Can also sample atomic events easily

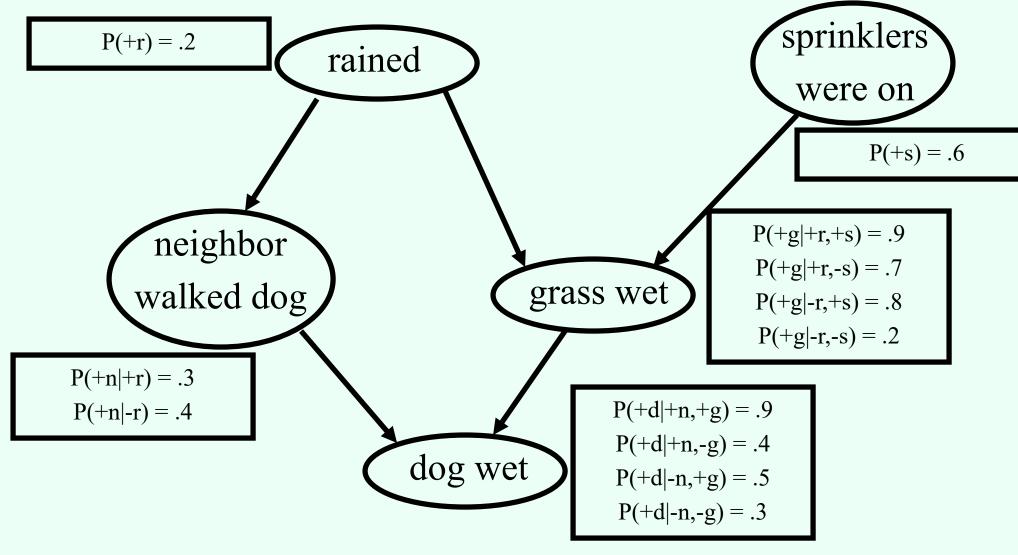
Inference sprinklers P(+r) = .2rained were on P(+s) = .6P(+g|+r,+s) = .9neighbor P(+g|+r,-s) = .7walked dog grass wet P(+g|-r,+s) = .8P(+g|-r,-s) = .2P(+n|+r) = .3P(+d|+n,+g) = .9P(+n|-r) = .4P(+d|+n,-g) = .4dog wet P(+d|-n,+g) = .5P(+d|-n,-g) = .3

- Want to know: P(+r|+d) = P(+r,+d)/P(+d)
- Let's compute P(+r,+d)



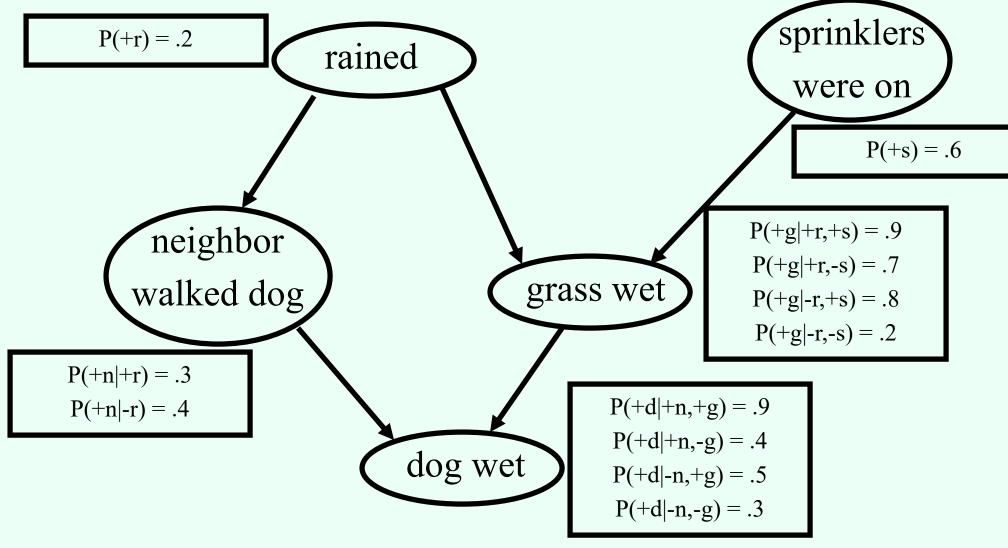
• $P(+r,+d) = \Sigma_s \Sigma_g \Sigma_n P(+r)P(s)P(n|+r)P(g|+r,s)P(+d|n,g) = P(+r)\Sigma_s P(s)\Sigma_g P(g|+r,s)\Sigma_n P(n|+r)P(+d|n,g)$

Variable elimination



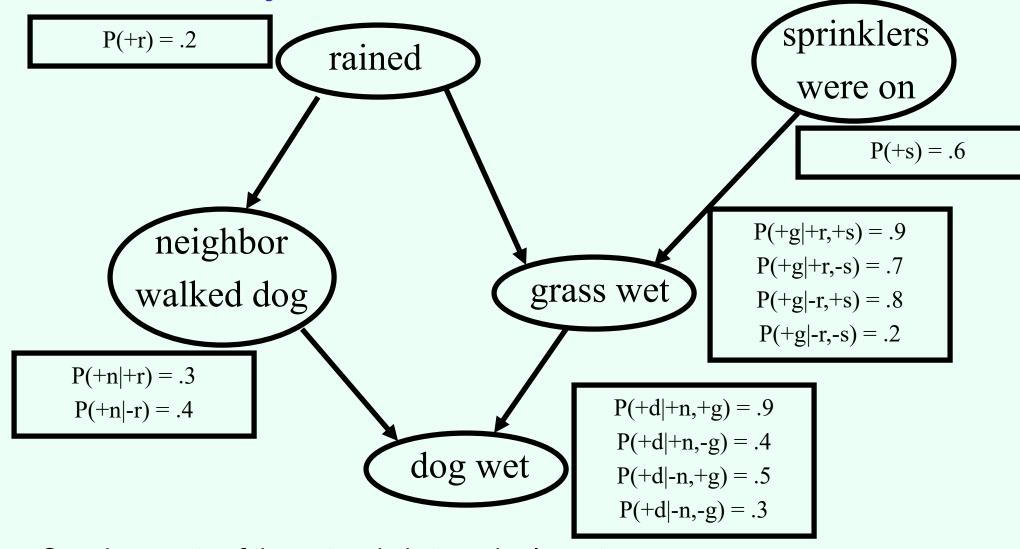
- From the factor $\Sigma_n P(n|+r)P(+d|n,g)$ we sum out n to obtain a factor only depending on g
- $[\Sigma_n P(n|+r)P(+d|n,+g)] = P(+n|+r)P(+d|+n,+g) + P(-n|+r)P(+d|-n,+g) = .3*.9+.7*.5 = .62$
- $[\Sigma_n P(n|+r)P(+d|n,-g)] = P(+n|+r)P(+d|+n,-g) + P(-n|+r)P(+d|-n,-g) = .3*.4+.7*.3 = .33$
- Continuing to the left, g will be summed out next, etc. (continued on board)

Elimination order matters



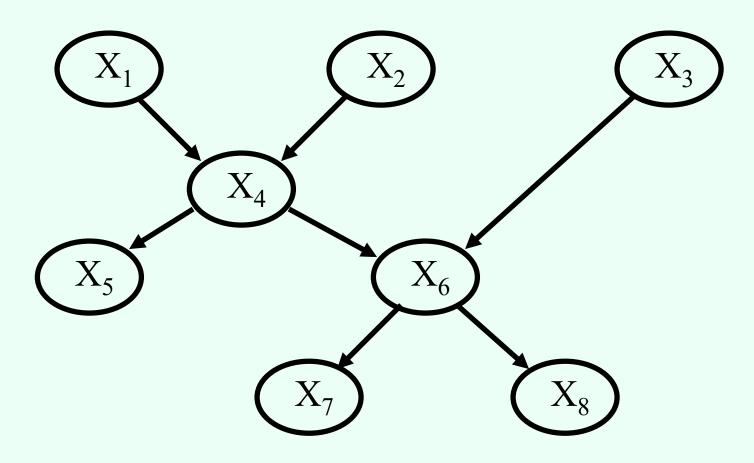
- $P(+r,+d) = \Sigma_n \Sigma_s \Sigma_g P(+r)P(s)P(n|+r)P(g|+r,s)P(+d|n,g) = P(+r)\Sigma_n P(n|+r)\Sigma_s P(s)\Sigma_g P(g|+r,s)P(+d|n,g)$
- Last factor will depend on two variables in this case!

Don't always need to sum over all variables



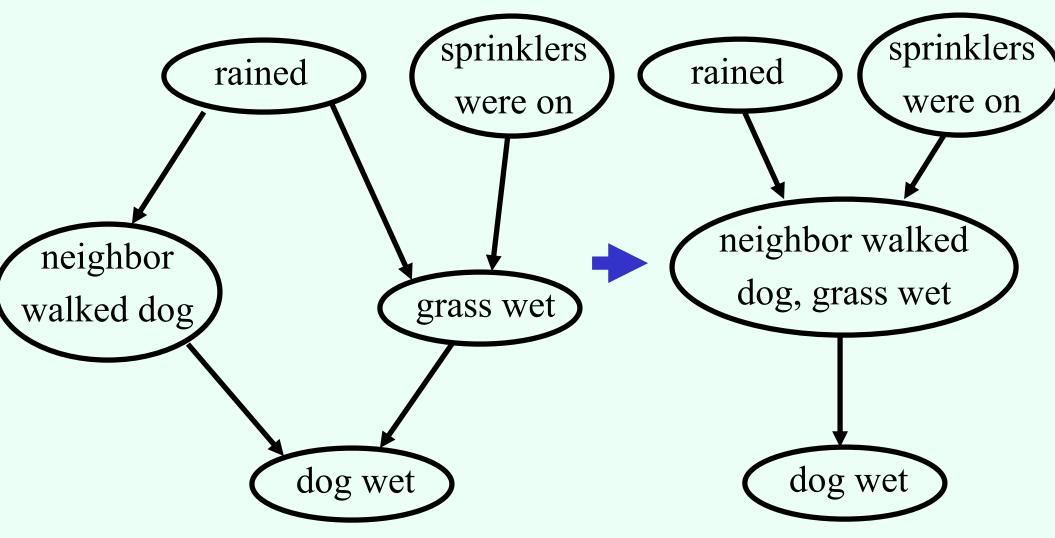
- Can drop parts of the network that are irrelevant
- P(+r, +s) = P(+r)P(+s) = .6*.2 = .12
- $P(+n, +s) = \Sigma_r P(r, +n, +s) = \Sigma_r P(r) P(+n|r) P(+s) = P(+s) \Sigma_r P(r) P(+n|r) = P(+s) (P(+r) P(+n|+r) + P(-r) P(+n|-r)) = .6*(.2*.3 + .8*.4) = .6*.38 = .228$
- $P(+d \mid +n, +g, +s) = P(+d \mid +n, +g) = .9$

Trees are easy



- Choose an extreme variable to eliminate first
- Its probability is "absorbed" by its neighbor
- ... $\Sigma_{x_4} P(x_4|x_1,x_2)...\Sigma_{x_5} P(x_5|x_4) = ...\Sigma_{x_4} P(x_4|x_1,x_2)[\Sigma_{x_5} P(x_5|x_4)]...$

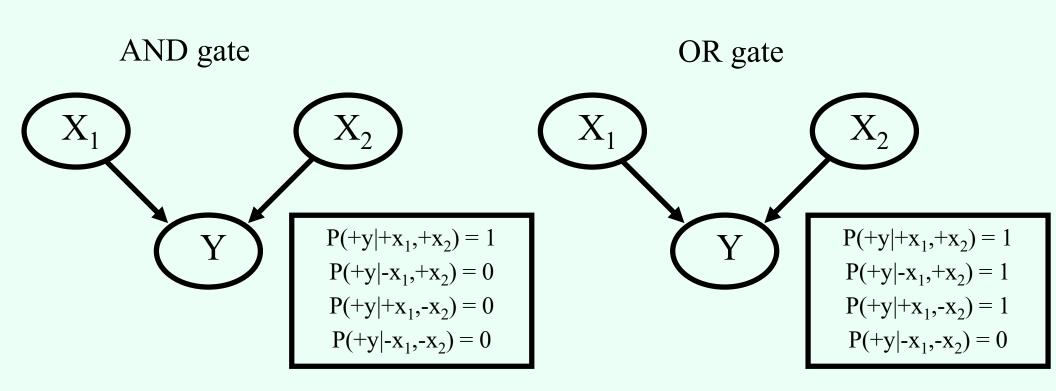
Clustering algorithms



- Merge nodes into "meganodes" until we have a tree
 - Then, can apply special-purpose algorithm for trees
- Merged node has values {+n+g,+n-g,-n+g,-n-g}
 - Much larger CPT

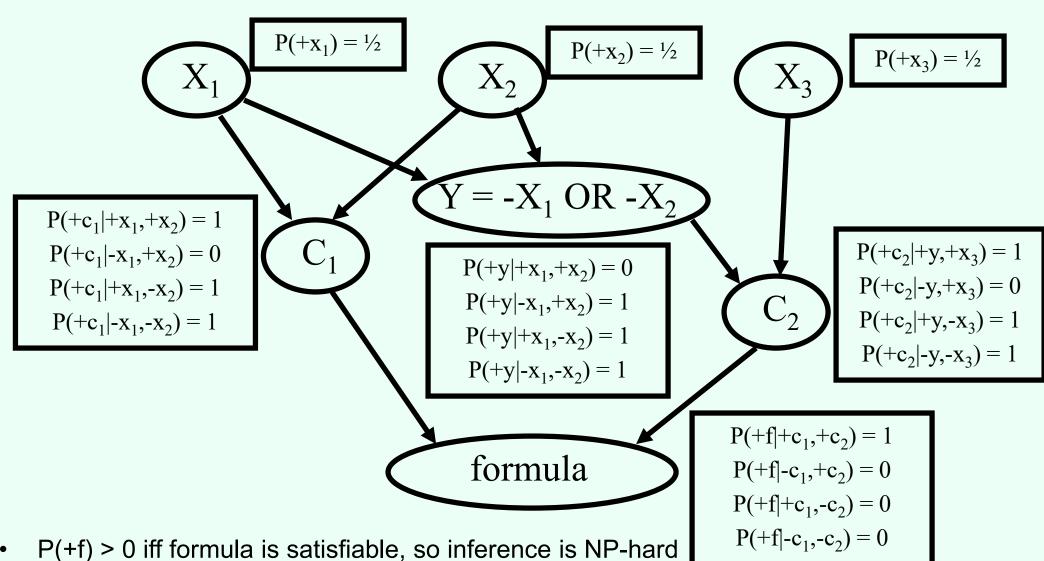
Logic gates in Bayes nets

Not everything needs to be random...



Modeling satisfiability as a Bayes Net

(+X₁ OR -X₂) AND (-X₁ OR -X₂ OR -X₃)



 P(+f) = (#satisfying assignments/2ⁿ), so inference is #P-hard (because counting number of satisfying assignments is)

More about conditional independence

- A node is conditionally independent of its non-descendants, given its parents
- A node is conditionally independent of everything else in the graph, given its parents, children, and children's parents (its Markov blanket)

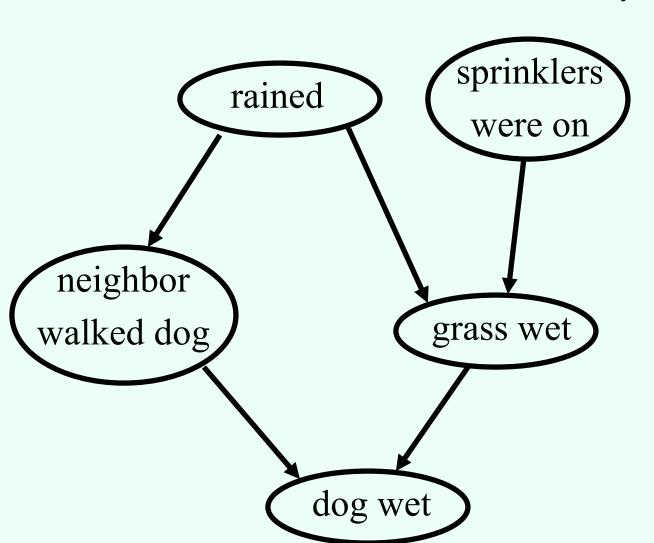


- N is independent of G
- N is **not** independent of G given R and D
- N is independent of S given R, G, D

Note: can't know for sure that two nodes are not independent: edges may be dummy edges

General criterion: d-separation

- Sets of variables X and Y are conditionally independent given variables in Z if all paths between X and Y are blocked; a path is blocked if one of the following holds:
 - it contains U -> V -> W or U <- V <- W or U <- V -> W, and V is in Z
 - it contains U -> V <- W, and neither V nor any of its descendants are in Z



- N is independent of G given R
- N is not independent of S given R and D