
Artificial Intelligence

Propositional Logic

Instructor: Vincent Conitzer

Logic and AI
• Would like our AI to have knowledge about

the world, and logically draw conclusions

from it

• Search algorithms generate successors and

evaluate them, but do not “understand” much

about the setting

• Example question: is it possible for a chess

player to have 8 pawns and 2 queens?

– Search algorithm could search through tons of

states to see if this ever happens, but…

A story
• You roommate comes home; he/she is completely wet

• You know the following things:

– Your roommate is wet

– If your roommate is wet, it is because of rain, sprinklers, or both

– If your roommate is wet because of sprinklers, the sprinklers must be on

– If your roommate is wet because of rain, your roommate must not be carrying

the umbrella

– The umbrella is not in the umbrella holder

– If the umbrella is not in the umbrella holder, either you must be carrying the

umbrella, or your roommate must be carrying the umbrella

– You are not carrying the umbrella

• Can you conclude that the sprinklers are on?

• Can AI conclude that the sprinklers are on?

Knowledge base for the story
• RoommateWet

• RoommateWet => (RoommateWetBecauseOfRain

OR RoommateWetBecauseOfSprinklers)

• RoommateWetBecauseOfSprinklers =>

SprinklersOn

• RoommateWetBecauseOfRain =>

NOT(RoommateCarryingUmbrella)

• UmbrellaGone

• UmbrellaGone => (YouCarryingUmbrella OR

RoommateCarryingUmbrella)

• NOT(YouCarryingUmbrella)

Syntax
• What do well-formed sentences in the

knowledge base look like?

• A BNF grammar:

• Symbol → P, Q, R, …, RoommateWet, …

• Sentence → True | False | Symbol |

NOT(Sentence) | (Sentence AND Sentence)

| (Sentence OR Sentence) | (Sentence =>

Sentence)

• We will drop parentheses sometimes, but

formally they really should always be there

Semantics
• A model specifies which of the proposition

symbols are true and which are false

• Given a model, I should be able to tell you

whether a sentence is true or false

• Truth table defines semantics of operators:

a b NOT(a) a AND b a OR b a => b

false false true false false true

false true true false true true

true false false false true false

true true false true true true

• Given a model, can compute truth of sentence

recursively with these

Caveats

• TwoIsAnEvenNumber OR

ThreeIsAnOddNumber

is true (not exclusive OR)

• TwoIsAnOddNumber =>

ThreeIsAnEvenNumber

is true (if the left side is false it’s always true)

All of this is assuming those symbols are assigned their

natural values…

Tautologies
• A sentence is a tautology if it is true for any

setting of its propositional symbols

P Q P OR Q NOT(P) AND

NOT(Q)

(P OR Q)

OR (NOT(P)

AND

NOT(Q))

false false false true true

false true true false true

true false true false true

true true true false true

• (P OR Q) OR (NOT(P) AND NOT(Q)) is a tautology

Is this a tautology?

• (P => Q) OR (Q => P)

Logical equivalences
• Two sentences are logically equivalent if they

have the same truth value for every setting of
their propositional variables

P Q P OR Q NOT(NOT(P)

AND NOT(Q))

false false false false

false true true true

true false true true

true true true true

• P OR Q and NOT(NOT(P) AND NOT(Q)) are

logically equivalent

• Tautology = logically equivalent to True

Famous logical equivalences

• (a OR b) ≡ (b OR a) commutatitvity

• (a AND b) ≡ (b AND a) commutatitvity

• ((a AND b) AND c) ≡ (a AND (b AND c)) associativity

• ((a OR b) OR c) ≡ (a OR (b OR c)) associativity

• NOT(NOT(a)) ≡ a double-negation elimination

• (a => b) ≡ (NOT(b) => NOT(a)) contraposition

• (a => b) ≡ (NOT(a) OR b) implication elimination

• NOT(a AND b) ≡ (NOT(a) OR NOT(b)) De Morgan

• NOT(a OR b) ≡ (NOT(a) AND NOT(b)) De Morgan

• (a AND (b OR c)) ≡ ((a AND b) OR (a AND c)) distributitivity

• (a OR (b AND c)) ≡ ((a OR b) AND (a OR c)) distributitivity

Inference
• We have a knowledge base of things that we know are

true
– RoommateWetBecauseOfSprinklers

– RoommateWetBecauseOfSprinklers => SprinklersOn

• Can we conclude that SprinklersOn?

• We say SprinklersOn is entailed by the knowledge base if,
for every setting of the propositional variables for which
the knowledge base is true, SprinklersOn is also true

RWBOS SprinklersOn Knowledge base

false false false

false true false

true false false

true true true

• SprinklersOn is entailed!

Simple algorithm for inference

• Want to find out if sentence a is entailed by knowledge

base…

• For every possible setting of the propositional variables,

– If knowledge base is true and a is false, return false

• Return true

• Not very efficient: 2#propositional variables settings

Inconsistent knowledge bases
• Suppose we were careless in how we specified our

knowledge base:

• PetOfRoommateIsABird => PetOfRoommateCanFly

• PetOfRoommateIsAPenguin => PetOfRoommateIsABird

• PetOfRoommateIsAPenguin =>

NOT(PetOfRoommateCanFly)

• PetOfRoommateIsAPenguin

• No setting of the propositional variables makes all of these

true

• Therefore, technically, this knowledge base implies anything

• TheMoonIsMadeOfCheese

Reasoning patterns

• Obtain new sentences directly from some

other sentences in knowledge base according

to reasoning patterns

• If we have sentences a and a => b , we can

correctly conclude the new sentence b

– This is called modus ponens

• If we have a AND b , we can correctly

conclude a

• All of the logical equivalences from before

also give reasoning patterns

Formal proof that the sprinklers are on
1) RoommateWet

2) RoommateWet => (RoommateWetBecauseOfRain OR RoommateWetBecauseOfSprinklers)

3) RoommateWetBecauseOfSprinklers => SprinklersOn

4) RoommateWetBecauseOfRain => NOT(RoommateCarryingUmbrella)

5) UmbrellaGone

6) UmbrellaGone => (YouCarryingUmbrella OR RoommateCarryingUmbrella)

7) NOT(YouCarryingUmbrella)

8) YouCarryingUmbrella OR RoommateCarryingUmbrella (modus ponens on 5 and 6)

9) NOT(YouCarryingUmbrella) => RoommateCarryingUmbrella (equivalent to 8)

10) RoommateCarryingUmbrella (modus ponens on 7 and 9)

11) NOT(NOT(RoommateCarryingUmbrella) (equivalent to 10)

12) NOT(NOT(RoommateCarryingUmbrella)) => NOT(RoommateWetBecauseOfRain) (equivalent to

4 by contraposition)

13) NOT(RoommateWetBecauseOfRain) (modus ponens on 11 and 12)

14) RoommateWetBecauseOfRain OR RoommateWetBecauseOfSprinklers (modus ponens on 1

and 2)

15) NOT(RoommateWetBecauseOfRain) => RoommateWetBecauseOfSprinklers (equivalent to 14)

16) RoommateWetBecauseOfSprinklers (modus ponens on 13 and 15)

17) SprinklersOn (modus ponens on 16 and 3)

Reasoning about penguins

1) PetOfRoommateIsABird => PetOfRoommateCanFly

2) PetOfRoommateIsAPenguin => PetOfRoommateIsABird

3) PetOfRoommateIsAPenguin => NOT(PetOfRoommateCanFly)

4) PetOfRoommateIsAPenguin

5) PetOfRoommateIsABird (modus ponens on 4 and 2)

6) PetOfRoommateCanFly (modus ponens on 5 and 1)

7) NOT(PetOfRoommateCanFly) (modus ponens on 4 and 3)

8) NOT(PetOfRoommateCanFly) => FALSE (equivalent to 6)

9) FALSE (modus ponens on 7 and 8)

10) FALSE => TheMoonIsMadeOfCheese (tautology)

11) TheMoonIsMadeOfCheese (modus ponens on 9 and 10)

Getting more systematic
• Any knowledge base can be written as a single

formula in conjunctive normal form (CNF)

– CNF formula: (… OR … OR …) AND (… OR …) AND …

– … can be a symbol x, or NOT(x) (these are called literals)

– Multiple facts in knowledge base are effectively ANDed

together

RoommateWet => (RoommateWetBecauseOfRain

OR RoommateWetBecauseOfSprinklers)

becomes

(NOT(RoommateWet) OR

RoommateWetBecauseOfRain OR

RoommateWetBecauseOfSprinklers)

Converting story problem to

conjunctive normal form
• RoommateWet

– RoommateWet

• RoommateWet => (RoommateWetBecauseOfRain OR

RoommateWetBecauseOfSprinklers)

– NOT(RoommateWet) OR RoommateWetBecauseOfRain OR

RoommateWetBecauseOfSprinklers

• RoommateWetBecauseOfSprinklers => SprinklersOn

– NOT(RoommateWetBecauseOfSprinklers) OR SprinklersOn

• RoommateWetBecauseOfRain => NOT(RoommateCarryingUmbrella)

– NOT(RoommateWetBecauseOfRain) OR NOT(RoommateCarryingUmbrella)

• UmbrellaGone

– UmbrellaGone

• UmbrellaGone => (YouCarryingUmbrella OR RoommateCarryingUmbrella)

– NOT(UmbrellaGone) OR YouCarryingUmbrella OR RoommateCarryingUmbrella

• NOT(YouCarryingUmbrella)

– NOT(YouCarryingUmbrella)

Unit resolution

• Unit resolution: if we have

• l1 OR l2 OR … OR lk

and

• NOT(li)

we can conclude

• l1 OR l2 OR … li-1 OR li+1 OR … OR lk

• Basically modus ponens

Applying resolution to story problem
1) RoommateWet

2) NOT(RoommateWet) OR RoommateWetBecauseOfRain OR

RoommateWetBecauseOfSprinklers

3) NOT(RoommateWetBecauseOfSprinklers) OR SprinklersOn

4) NOT(RoommateWetBecauseOfRain) OR

NOT(RoommateCarryingUmbrella)

5) UmbrellaGone

6) NOT(UmbrellaGone) OR YouCarryingUmbrella OR

RoommateCarryingUmbrella

7) NOT(YouCarryingUmbrella)

8) NOT(UmbrellaGone) OR RoommateCarryingUmbrella (6,7)

9) RoommateCarryingUmbrella (5,8)

10) NOT(RoommateWetBecauseOfRain) (4,9)

11) NOT(RoommateWet) OR RoommateWetBecauseOfSprinklers (2,10)

12) RoommateWetBecauseOfSprinklers (1,11)

13) SprinklersOn (3,12)

Limitations of unit resolution

• P OR Q

• NOT(P) OR Q

• Can we conclude Q?

(General) resolution

• General resolution: if we have

• l1 OR l2 OR … OR lk

and

• m1 OR m2 OR … OR mn

where for some i,j, li = NOT(mj)

we can conclude

• l1 OR l2 OR … li-1 OR li+1 OR … OR lk OR m1 OR m2

OR … OR mj-1 OR mj+1 OR … OR mn

• Same literal may appear multiple times; remove

those

Applying resolution to story problem (more clumsily)

1) RoommateWet

2) NOT(RoommateWet) OR RoommateWetBecauseOfRain OR

RoommateWetBecauseOfSprinklers

3) NOT(RoommateWetBecauseOfSprinklers) OR SprinklersOn

4) NOT(RoommateWetBecauseOfRain) OR NOT(RoommateCarryingUmbrella)

5) UmbrellaGone

6) NOT(UmbrellaGone) OR YouCarryingUmbrella OR RoommateCarryingUmbrella

7) NOT(YouCarryingUmbrella)

8) NOT(RoommateWet) OR RoommateWetBecauseOfRain OR SprinklersOn (2,3)

9) NOT(RoommateCarryingUmbrella) OR NOT(RoommateWet) OR SprinklersOn

(4,8)

10) NOT(UmbrellaGone) OR YouCarryingUmbrella OR NOT(RoommateWet) OR

SprinklersOn (6,9)

11) YouCarryingUmbrella OR NOT(RoommateWet) OR SprinklersOn (5,10)

12) NOT(RoommateWet) OR SprinklersOn (7,11)

13) SprinklersOn (1,12)

Systematic inference?

• General strategy: if we want to see if sentence

a is entailed, add NOT(a) to the knowledge

base and see if it becomes inconsistent (we

can derive a contradiction)

• CNF formula for modified knowledge base is

satisfiable if and only if sentence a is not

entailed

– Satisfiable = there exists a model that makes the

modified knowledge base true = modified

knowledge base is consistent

Resolution algorithm

• Given formula in conjunctive normal form, repeat:

• Find two clauses with complementary literals,

• Apply resolution,

• Add resulting clause (if not already there)

• If the empty clause results, formula is not satisfiable

– Must have been obtained from P and NOT(P)

• Otherwise, if we get stuck (and we will eventually),

the formula is guaranteed to be satisfiable (proof in

a couple of slides)

Example

• Our knowledge base:

– 1) RoommateWetBecauseOfSprinklers

– 2) NOT(RoommateWetBecauseOfSprinklers) OR

SprinklersOn

• Can we infer SprinklersOn? We add:

– 3) NOT(SprinklersOn)

• From 2) and 3), get

– 4) NOT(RoommateWetBecauseOfSprinklers)

• From 4) and 1), get empty clause

If we get stuck, why is

the formula satisfiable?
• Consider the final set of clauses C

• Construct satisfying assignment as follows:

• Assign truth values to variables in order x1, x2, …, xn

• If xj is the last chance to satisfy a clause (i.e., all the other variables in the

clause came earlier and were set the wrong way), then set xj to satisfy it

– Otherwise, doesn’t matter how it’s set

• Suppose this fails (for the first time) at some point, i.e., xj must be

set to true for one last-chance clause and false for another

• These two clauses would have resolved to something involving only

up to xj-1 (not to the empty clause, of course), which must be

satisfied

• But then one of the two clauses must also be satisfied -

contradiction

Special case: Horn clauses

• Horn clauses are implications with only positive literals

• x1 AND x2 AND x4 => x3 AND x6

• TRUE => x1

• Try to figure out whether some xj is entailed

• Simply follow the implications (modus ponens) as far as you

can, see if you can reach xj

• xj is entailed if and only if it can be reached (can set

everything that is not reached to false)

• Can implement this more efficiently by maintaining, for each

implication, a count of how many of the left-hand side

variables have been reached

