Artificial Intelligence

Markov processes and Hidden
Markov Models (HMMs)

Instructor: Vincent Conitzer



Motivation

* The Bayes nets we considered so far were
static: they referred to a single point in time

— E.g., medical diagnosis
* Agent needs to model how the world evolves

— Speech recognition software needs to process
speech over time

— Artificially intelligent software assistant needs to
keep track of user's intentions over time



Markov processes
 We have time periodst=0, 1, 2, ...

* In each period t, the world is in a certain state S,

» The Markov assumption: given S, S, Is
independent of all S; with i <'t
— P(St1 131, Sy, -+, S1) = P(Spq | Sy)

— Given the current state, history tells us nothing more
about the future

« Typically, all the CPTs are the same:

» Forallt, P(Sy,=]| S;=1) = g; (stationarity assumption)



Weather example

« S;is one of {s, ¢, r} (sun, cloudy, rain)
 Transition probabilities:

 Also need to specify an initial distribution P(S,)
» Throughout, assume P(S,=s) = 1



Weather example...

« What is the probability that it rains two days from
now? P(S,=r)

« P(S,=71)=P(S,
P(S,=r, S,=0)

N+ P(S,=r1,5,=58)+

S, =
*3+.6°.1+.3".3=.18

1



Weather example...
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« What is the probability that it rains three days from
now?

« Computationally inefficient way: P(S;=r) = P(S;
nS,=rS,=r+P(S;=r,5,=r,5,=s) + ...

 For n periods into the future, need to sum over 3"
paths



Weather example...

More efficient: S

P(S;=r)=P(S;=r,S,=r)+ P(S;=r,S,=5)+ P(S;=r,
S;=C) =P(S;=r1[S,=nP(S,=1) + P(S3=r[ S;,=5)P(S;
=8)+P(S;=r|S,=¢c)P(S,=0)

Only hard part: figure out P(S,)

Main idea: compute distribution P(S,), then P(S,), then
P(S;)

Linear in number of periods!
example on board



Stationary distributions

As t goes to infinity, “generally,” the distribution
P(S;) will converge to a stationary distribution

A distribution given by probabilities 1T (where i is a

state) is stationary if:
P(S;= 1) =mr;means that P(S,,, = 1) =,

Of course,
P(St1=1) =2, P(Si1 =1, 5;=]) = 2, P(S;=)) a;
So, stationary distribution is defined by

T, = Zj TT; 3;



Computing the statlonary distribution

* I = .61, + .41+ .2™m,
e I = .3m + .31, + .51,

o .= .11 + .31+ .31,



Restrictiveness of Markov models

* Are past and future really independent given current state?

* E.g., suppose that when it rains, it rains for at most 2 days

D FEH T PN

« Second-order Markov process

« Workaround: change meaning of “state” to events of last 2 days

* Another approach: add more information to the state

* E.g., the full state of the world would include whether the
sky is full of water
— Additional information may not be observable

— Blowup of number of states...



Hidden Markov models (HMMs)

« Same as Markov model, except we cannot see the
state

* |nstead, we only see an observation each period,
which depends on the current state

» Still need a transition model: P(Sy,, = | S;=1) = g;

» Also need an observation model: P(O,=k | S;=1) = b,



Weather example extended to HMM

 Transition probabilities:

» Observation: labmate wet or dry
e b, =.1,b,=.3,b,=.8



HMM weather example: a question

You have been stuck in the lab for three days (!)

On those days, your labmate was dry, wet, wet,
respectively

What is the probability that it is now raining outside?
P(S,=r|Oy,=d,0,=w, O,=w)

- By Bayes' rule, really want to know P(S,, Oy=d, O,=w, O,=w)



Solving the question

« Computationally efficiésnt approach: first compute
P(S:=1, Oy=d, O, =w) for all states |

» General case: solve for P(S,, Oy=0,,0,=04, ..., O,
= o,) for t=1, then t=2, ... This is called monitoring

* P(S;, Op=0y,0,=04,...,0,=0)) = 2, P(S4 =S4,
O =00, 01=0y, ..., O = 0yy) P(S¢| St = S1q) P(O=
o, | S;)



Predicting further out
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You have been stuck in the lab for three days

On those days, your labmate was dry, wet, wet,
respectively

What is the probability that two days from now it
will be raining outside?

P(S,=r|Oy,=d, 0;=w, O,=w)



Predicting further out, continued...
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Want to know: P(S,=r| O,=d, O, =w, O,=w)

Already know how to get: P(S,| Oy=d, O,=w, O,=w)
P(S;=r|0y=d,0,=w, O,=w) =

2., P(S3=r1,S,=8,|0p=d, O;=w, O,=w)

25, P(S3=r1[S,=5,)P(S,=5,| Op=d, O;=w, O,=w)
Etc. for S,

So: monitoring first, then straightforward Markov process
updates




Integrating newer information
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* You have been stuck in the lab for four days (!)

* On those days, your labmate was dry, wet, wet, dry
respectively

« What is the probability that two days ago it was

raining outside? P(S,;=r|O,=d, O,=w, O,=w, O,
= d)

— Smoothing or hindsight problem



Hindsight problem continued...

Want: P(S,=r| Oy=d, O1 w, O, =w, O;=d)

“Partial” application of Bayes' rule:
P(S=r|0Oy,=d,0,=w,0O,=w, O;=d) =
P(S;=r,0,=w,05=d|0y=d,O0,=w)/
P(O,=w,O;=d|O,=d, O,=w)
So really want to know P(S,, O,=w, O;=d | Oy,=d, O,=w)



Hindsight problem continued...

Want to know P(S,;=r1, O,=w, O3=d | Oy=d, O, =w)
P(S;=r0,=w,0;=d|0y=d, O,=w) =
P(S;=r|0Oy=d,0,=w)P(O,=w, O3=d | S,;=r)
Already know how to compute P(S,=r| Oy=d, O, = w)
Just need to compute P(O,=w, O;=d | S,;=r)



Hindsight problem continued...
N

Just need to compute P(O,=w, O;=d | S,;=r)
P(O,=w,O;=d|S,=r)=

2, P(Sy=5,5, 0,=w,0;=d|5;=r1) =

25, P(S2=8, | S1=1) P(Oy=wW [ S;,=5,) P(O3=d | S, = s5)
First two factors directly in the model; last factor is a
“smaller” problem of the same kind

Use dynamic programming, backwards from the future
— Similar to forwards approach from the past



Backwards reasoning in general
» Want to know P(O,,,= 0,4, ..., O;= 0, |

Sk)

* First compute
P(O;= 0, [ Si.4) =25 P(S; = 8| S¢.1)P(O, = o4
| St = sy)

 Then compute
P(O;= 0y, O =04 | Stn) =2, P(Siq = Sy4
‘ Si2)P(Oq = 0pq | Siq = s.4) P(O = 0] S¢.;



Variable elimination
* Because all of this is inference in a Bayes net, we

can also just do variable elimination

« E.g.,P(S;=1r,0,=d,0,=w, O;=w) =
2,2, P(S4=51)P(0,=d|S=5,)P(S,=s,[S:=s,)

S2 81

P(O,=w|[S,=5,)P(S3=r|S,=s,)P(O3=w|S;=r)

* |t's a tree, so variable elimination works well



Dynamic Bayes Nets

« So far assumed that each period has one variable
for state, one variable for observation

« Often better to divide state and observation up into
multiple variables

weather in Durham, 1 weather in Durham, 2

\

weather in Beaufort, 1 . weather in Beaufort, 2

edges both within a period, and from one period to the next...



Some interesting things we skipped

 Finding the most likely sequence of
states, given observations

—Not necessary equal to the sequence of
most likely states! (example?)

—Viterbi algorithm

» Key idea: for each period t, for every state,
keep track of most likely sequence to that state
at that period, given evidence up to that period

 Continuous variables

» Approximate inference methods
—Particle filtering



