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Motivation

• The Bayes nets we considered so far were 

static: they referred to a single point in time

– E.g., medical diagnosis

• Agent needs to model how the world evolves

– Speech recognition software needs to process 

speech over time

– Artificially intelligent software assistant needs to 

keep track of user’s intentions over time

– … … …



Markov processes
• We have time periods t = 0, 1, 2, …

• In each period t, the world is in a certain state St

• The Markov assumption: given St, St+1 is 

independent of all Si with i < t

– P(St+1 | S1, S2, …, St) = P(St+1 | St)

– Given the current state, history tells us nothing more 

about the future

S1 S2 S3 … St …

• Typically, all the CPTs are the same:

• For all t, P(St+1 = j | St = i) = aij (stationarity assumption)

•



Weather example
• St is one of {s, c, r} (sun, cloudy, rain)

• Transition probabilities:
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not a Bayes net!

• Also need to specify an initial distribution P(S0)

• Throughout, assume P(S0 = s) = 1



Weather example…
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• What is the probability that it rains two days from 

now?   P(S2 = r) 

• P(S2 = r) = P(S2 = r, S1 = r) + P(S2 = r, S1 = s) + 

P(S2 = r, S1 = c) = .1*.3 + .6*.1 + .3*.3 = .18



Weather example…
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• What is the probability that it rains three days from 

now? 

• Computationally inefficient way: P(S3 = r) = P(S3 = 

r, S2 = r, S1 = r) + P(S3 = r, S2 = r, S1 = s) + …

• For n periods into the future, need to sum over 3n-1

paths



Weather example…
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• More efficient:

• P(S3 = r) = P(S3 = r, S2 = r) + P(S3 = r, S2 = s) + P(S3 = r, 

S2 = c) = P(S3 = r | S2 = r)P(S2 = r) + P(S3 = r | S2 = s)P(S2 

= s) + P(S3 = r | S2 = c)P(S2 = c)

• Only hard part: figure out P(S2)

• Main idea: compute distribution P(S1), then P(S2), then 

P(S3)

• Linear in number of periods!
example on board



Stationary distributions
• As t goes to infinity, “generally,” the distribution 

P(St) will converge to a stationary distribution 

• A distribution given by probabilities πi (where i is a 

state) is stationary if: 

P(St = i) =πi means that P(St+1 = i) =πi 

• Of course, 

P(St+1 = i) = Σj P(St+1 = i, St = j) = Σj P(St = j) aji

• So, stationary distribution is defined by 

πi = Σj πj aji



Computing the stationary distribution

• πs = .6πs + .4πc + .2πr

• πc = .3πs + .3πc + .5πr

• πr = .1πs + .3πc + .3πr 
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Restrictiveness of Markov models
• Are past and future really independent given current state?

• E.g., suppose that when it rains, it rains for at most 2 days

S1 S2 S3 S4 …
• Second-order Markov process

• Workaround: change meaning of “state” to events of last 2 days

S1, S2 …S2, S3 S3, S4 S4, S5

• Another approach: add more information to the state

• E.g., the full state of the world would include whether the 

sky is full of water

– Additional information may not be observable

– Blowup of number of states…



Hidden Markov models (HMMs)
• Same as Markov model, except we cannot see the 

state

• Instead, we only see an observation each period, 

which depends on the current state

S1 S2 S3 … St …

• Still need a transition model: P(St+1 = j | St = i) = aij

• Also need an observation model: P(Ot = k | St = i) = bik

O1 O2 O3 … Ot …



Weather example extended to HMM 

• Transition probabilities:
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• Observation: labmate wet or dry

• bsw = .1, bcw = .3, brw = .8 



HMM weather example: a question
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• You have been stuck in the lab for three days (!)

• On those days, your labmate was dry, wet, wet, 

respectively

• What is the probability that it is now raining outside?

• P(S2 = r | O0 = d, O1 = w, O2 = w)
• By Bayes’ rule, really want to know P(S2, O0 = d, O1 = w, O2 = w)

bsw = .1 

bcw = .3 

brw = .8



Solving the question 
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• Computationally efficient approach: first compute

P(S1 = i, O0 = d, O1 = w) for all states i

• General case: solve for P(St, O0 = o0, O1 = o1, …, Ot 

= ot) for t=1, then t=2, …  This is called monitoring

• P(St, O0 = o0, O1 = o1, …, Ot = ot) = Σst-1 
P(St-1 = st-1, 

O0 = o0, O1 = o1, …, Ot-1 = ot-1) P(St | St-1 = st-1) P(Ot = 

ot | St)

bsw = .1 

bcw = .3 

brw = .8



Predicting further out
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• You have been stuck in the lab for three days

• On those days, your labmate was dry, wet, wet, 

respectively

• What is the probability that two days from now it 

will be raining outside?  

• P(S4 = r | O0 = d, O1 = w, O2 = w)

bsw = .1 

bcw = .3 

brw = .8



Predicting further out, continued…
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• Want to know: P(S4 = r | O0 = d, O1 = w, O2 = w)

• Already know how to get: P(S2 | O0 = d, O1 = w, O2 = w)

• P(S3 = r | O0 = d, O1 = w, O2 = w) = 

Σs2
P(S3 = r, S2 = s2 | O0 = d, O1 = w, O2 = w) 

Σs2
P(S3 = r | S2 = s2)P(S2 = s2 | O0 = d, O1 = w, O2 = w)

• Etc. for S4

• So: monitoring first, then straightforward Markov process 

updates
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Integrating newer information
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• You have been stuck in the lab for four days (!)

• On those days, your labmate was dry, wet, wet, dry 

respectively

• What is the probability that two days ago it was 

raining outside?  P(S1 = r | O0 = d, O1 = w, O2 = w, O3 

= d)

– Smoothing or hindsight problem
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Hindsight problem continued…
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• Want: P(S1 = r | O0 = d, O1 = w, O2 = w, O3 = d)

• “Partial” application of Bayes’ rule:

P(S1 = r | O0 = d, O1 = w, O2 = w, O3 = d) = 

P(S1 = r, O2 = w, O3 = d | O0 = d, O1 = w) / 

P(O2 = w, O3 = d | O0 = d, O1 = w)

• So really want to know P(S1, O2 = w, O3 = d | O0 = d, O1 = w) 

bsw = .1 

bcw = .3 

brw = .8



Hindsight problem continued…
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• Want to know P(S1 = r, O2 = w, O3 = d | O0 = d, O1 = w)

• P(S1 = r, O2 = w, O3 = d | O0 = d, O1 = w) = 

P(S1 = r | O0 = d, O1 = w) P(O2 = w, O3 = d | S1 = r)

• Already know how to compute P(S1 = r | O0 = d, O1 = w)

• Just need to compute P(O2 = w, O3 = d | S1 = r)

bsw = .1 

bcw = .3 

brw = .8



Hindsight problem continued…
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• Just need to compute P(O2 = w, O3 = d | S1 = r)

• P(O2 = w, O3 = d | S1 = r) = 

Σs2
P(S2 = s2, O2 = w, O3 = d | S1 = r) =

Σs2
P(S2 = s2 | S1 = r) P(O2 = w | S2 = s2) P(O3 = d | S2 = s2)

• First two factors directly in the model; last factor is a 

“smaller” problem of the same kind

• Use dynamic programming, backwards from the future

– Similar to forwards approach from the past
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Backwards reasoning in general

• Want to know P(Ok+1 = ok+1, …, Ot = ot | 

Sk)

• First compute 

P(Ot = ot | St-1) =Σst 
P(St  = st | St-1)P(Ot = ot 

| St  = st)

• Then compute 

P(Ot = ot, Ot-1 = ot-1 | St-2) =Σst-1 
P(St-1  = st-1 

| St-2)P(Ot-1 = ot-1 | St-1  = st-1) P(Ot = ot | St-1  

= st-1)

• Etc. 



Variable elimination
• Because all of this is inference in a Bayes net, we 

can also just do variable elimination

S1 S2 S3 … St …

• E.g., P(S3 = r, O1 = d, O2 = w, O3 = w) = 

Σs2
Σs1 

P(S1=s1)P(O1=d|S1=s1)P(S2=s2|S1=s1) 

P(O2=w|S2=s2)P(S3=r|S2=s2)P(O3=w|S3=r)

• It’s a tree, so variable elimination works well

O1 O2 O3 … Ot …



Dynamic Bayes Nets

• So far assumed that each period has one variable 

for state, one variable for observation

• Often better to divide state and observation up into 

multiple variables

NC wind, 1

weather in Durham, 1

weather in Beaufort, 1

NC wind, 2

weather in Durham, 2

weather in Beaufort, 2

…

edges both within a period, and from one period to the next…



Some interesting things we skipped

• Finding the most likely sequence of 

states, given observations

–Not necessary equal to the sequence of 

most likely states!  (example?)

–Viterbi algorithm

• Key idea: for each period t, for every state, 

keep track of most likely sequence to that state 

at that period, given evidence up to that period

• Continuous variables

• Approximate inference methods

–Particle filtering


