
COMPSCI330 Design and Analysis of Algorithms

Midterm Exam

Guidelines

• Describing Algorithms If you are asked to provide an algorithm, you should clearly define
each step of the procedure, and then analyze its overall running time. There is no need to
write pseudo-code; an unambiguous description of your algorithm in plain text will suffice.
If the running time of your algorithm is worse than the suggested running time, you might
receive partial credits.

• Timing Exam starts at 3:05 pm and ends at 4:20 pm.

Name: Duke ID:

For grading use only:
Problem 1a 1b 2 3 4 Total

Score

1



Problem 1 (Recursions). Please solve the following recursions (write the answer in asymptotic
notations T (n) = Θ(f(n))).

If you decide to use the recursion tree method, please draw the tree this time because it’s easy
to do on a piece of paper. You need to bound the amount of work in each layer, and take the sum
over all layers. You do not need to write the induction proof if you are using the recursion tree
method.

(a) (10 points)

T (n) = T (
n

2
) + T (

n

4
) + 2T (

n

8
) + n.

(Base case: T (1) = 0)

2



(b) (15 points)
T (n) = 2

√
nT (
√
n) + n.

(Base case: T (2) = 0)

3



Problem 2 (Gas Stations). You are driving to a faraway city. There is only one route (a direct
highway connecting two cities) that you can take, and the total distance is m miles. Your car can
only hold enough gas for 300 miles, so you will need to stop for gas. There are n gas stations along
the highway between the two cities. The i-th gas station has distance xi to the origin (the xi’s may
not be sorted).

(a) (10 points) Suppose you want to minimize the number of stops you need to make. Design a
greedy algorithm that finds out which gas stations you should stop at. (You always have a full tank
at the origin. Every time you go to a gas station, you will fill up the tank and will be able to go
for another 300 miles. The distance between two consecutive gas stations is at most 300). Make
your algorithm as fast as possible, and analyze its running time.

(b) (10 points) Prove the correctness of the algorithm you designed in (a).

(c) (5 points) Suppose different gas stations are at different distances to the highway, so it takes a
detour of ti minutes if you use gas station i.

Instead of minimizing the number of stops, we now want to minimize the total detour. The
detour is defined to be the sum of ti’s for the gas stations you visited. You can visit as many gas
stations as you need as long as the total detour is minimized.

Give an example where the algorithm you gave in (a) is no longer optimal. (Your example
should contain at most 4 gas stations.)

4



(This page is left empty intentionally.)

5



Problem 3 (Product of Sums). After solving the Sum of Products problem in homework, you are
going to solve a more interesting problem - product of sums.

Similar as before, you are given a sequence of real numbers a[1..n]. You can now add ‘+’ and
’×’ signs between these numbers, and your goal is to generate an expression that has the largest
value.

What is different from the original problem is that this time we want you to compute the sums
first, and then the products. That is, if there are 4 numbers and you added 3 signs +, ×, +, the
final result should be (a[1] + a[2]) × (a[3] + a[4]). You should think of this as there is always a
bracket for the sums.

As an example, if a = [−2, 0.3,−10, 2], then the optimal expression is (−2)×(0.3+(−10))×2 =
38.8. This is larger than any other expression (note here by larger we mean the usual meaning
of larger, i.e. a positive number is always larger than a negative number, we are not comparing
absolute values). You must add either a ‘+’ or a ‘×’ between two consecutive numbers, and sum is
always evaluated before products.

Design an algorithm that runs in time O(n2) and outputs the largest possible value. For this
problem you can assume additions, multiplications and comparisons of two real numbers can be
done in O(1) time.

(a) (15 points) Define the state (sub-problems), write the transition function, and specify the
base cases.

(b) (10 points) Design an algorithm for the Product of Sum problem. (No need to prove cor-
rectness for this problem. If your algorithm is slower than O(n2) you will not receive full
credit.)

6



(This page is left empty intentionally.)

7



Problem 4 (Balls and Bins). In this problem we consider throwing n balls to m bins. Each
ball will land randomly into one of the bins with equal probability. Different balls are completely
independent, and they can land into the same bin. After throwing all n balls, we would like to
check how many balls are in each bin.
(a) (10 points) Prove that, if m = n2, then the probability that all balls are in different bins is at
least 1/2.

(Hint: Let Xi,j be 1 if balls i, j are in the same bin. Try to compute the expected number of
“collisions” (two balls in the same bin) using Xi,j ’s.)

8



(b) (10 points) Suppose m = 2n, let ni (for i = 1, 2, ...,m) be the number of balls in i-th bin. Let
s be the sum of squares of ni:

s =
m∑
i=1

n2
i .

Prove that, the probability that s is at most 2n is at least 1/2. (Pr[s ≤ 2n] ≥ 1/2.)
(Hint: Again, let Xi,j be 1 if balls i, j are in the same bin. Try to relate s to Xi,j ’s.)

9



(c) (5 points) The reason we had questions (a) and (b) is to discuss the perfect hashing algorithm.
The goal of this new algorithm is to design a data-structure that supports the “Find” operation in
O(1) time even in the worst-case. (Note that usual hash tables will only guarantee O(1) time in
expectation).

The input of the algorithm is n pairs of numbers (x0, y0), (x2, y2), ..., (xn−1, yn−1) where xi 6= xj
for all pairs i 6= j. The “Find(x)” operation should return yi if x = xi, and NULL if x is not equal
to any of the xi’s.

The algorithm will store these pairs in a two-layer table structure. See Figure 1. Each pair
(xi, yi) is put into location g(xi) in table 1, where g is a random hash function. Of course, there
might be collisions in the first layer, where nt xi’s are mapped to the same cell g(xi) = t. These
pairs are then stored in a second-level hash table (instead of a linked list) of size n2

t . Each second-
level hash table will have a different hash function ft(·), and the algorithm will make sure there are
no collisions in the second layer. See the pseudo-code below.

Figure 1: A two-layer hash table (size of the table is just for illustration and do not agree with
what’s specified in algorithm)

Algorithm 1 ConstructSubTable(x[0..n− 1], y[0..n− 1])

1: Pick z = n2, allocate table of size z (with index 0..z − 1).
2: repeat
3: Pick a random hash function f that maps each x[i] to an independent random number in

{0, 1, 2, ..., z − 1}.
4: until all x[i]’s are mapped to different entries.
5: Store the Hash function, and put the value of y[i] to entry f(x[i]).

Prove that the ConstructHashTable algorithm is expected to run in O(n) time. (Here we assume
randomly picking a Hash function, and evaluating a hash function at a given position both take
O(1) time.)

10



Algorithm 2 ConstructHashTable(x[0..n− 1], y[0..n− 1])

1: Pick m = 2n, allocate a first-level table A of size m (with index 0..m− 1).
2: repeat
3: Pick a random hash function g that maps each xi to an independent random number in

{0, 1, 2, ...,m− 1}.
4: Let ni be the number of elements such that f(xj) = i.
5: Let s =

∑m−1
i=0 n2

i .
6: until s ≤ 2n.
7: Store the Hash function.
8: for i = 0 to m− 1 do
9: Let Pi be the set of all pairs (xj , yj) such that f(xj) = i

10: if Pi is empty then
11: ConstructSubTable(Pi)
12: Link A[i] to the table constructed.
13: else
14: Mark A[i] = NULL
15: end if
16: end for

11


