
CompSci 356: Computer Network
Architectures

Lecture 2: Network Architectures

Xiaowei Yang
xwy@cs.duke.edu

Overview

• Design requirements of the original Internet
– Where to places functions
– Ref:

• Concepts of Network Architectures

?

1st Mission of this course
• Understand the concepts and design principles that make

the Internet work
• Design process
– Identify requirements, brainstorm design choices/mechanisms,

make design decisions
– What requirements make sense to you?

• Scalable connectivity
• Cost-effective resource sharing
• Support for different types of services
• Manageability
• …

– It remains an open challenge how to incorporate other
requirements such as security into the Internet design

Features of computer networks

• Generality

• Carrying many different types of data

• Supporting an unlimited range of applications

What’s the Internet?

• The Internet is a large-scale general-purpose
computer network.
– Run more than one application

• The Internet transfers data between computers.

• The Internet is a network of networks.

Reference: The Design Philosophy
of the DARPA Internet Protocols

By David Clark

Design requirements and
techniques to meet them

1. Scalable connectivity
2. Cost-effective resource sharing
3. Support for common services
4. Manageability

1. Scalable connectivity

• A network must provide connectivity among a set of
computers
– Open vs close: to connect all computers or a subset of them?
– Internet is an open network

• Scalability: A system is designed to grow to an arbitrary
large size is said to scale
– How to connect an arbitrary large number of computers on a

network?

Connectivity recursively occurs at different
levels

• Link-level: connect two or more computers via a physical
medium or electromagnetic waves

• Computers are referred to as nodes
• The physical medium is referred to as a link

Point-to-Point

Multiple-Access

Switching

• Switching is a mechanism to achieve connectivity
• Nodes that are attached to at least two links forward data from one

link to another link
• They are called switches
• Computers outside the cloud are called hosts

• Circuit switching
– Sets up a circuit before nodes can communicate
– Switches connect circuits on different links

• Virtual circuit switching
• Packet switching

– Data are split into blocks of data called packets
– Store and forward
– Nodes send packets and switches forward them

• An internetwork of networks
– Each cloud is a network/a multiple-access link
– A node that is connected to two or more networks is commonly called a router

• Speaks different protocols than switches

– An internet can be viewed as a �cloud.�We can recursively build larger clouds
by connecting smaller ones

Inter-networking:
Another way to achieve
connectivity

Addressing
and routing

• Physical connectivity != connectivity
• Addressing and routing are mechanisms to achieve connectivity
• Nodes are assigned addresses
• Routers compute how to reach them by running routing protocols

2. Cost-effective resource sharing
• Question: how do all the hosts share the network when

they want to communicate with each other?
– Use at the same time
– Fair

• Multiplexing: a system resource is shared among multiple
users
– Analogy: CPU sharing

• Mechanisms to multiplexing
– Time-division multiplexing (TDM)
– Frequency-division multiplexing (FDM)
– Statistical multiplexing
– …

Multiplex Demultiplex

TDM and FDM
TDM

frequency

time

4 users
Example:

FDM

frequency

time

Problems with FDM and TDM

• What if a user does not have data to send all
the time (Over-provision)?
– Consider web browsing
–à Inefficient use of resources

• Max # of flows is fixed and known ahead of
time (Under-provision)
– Not practical to change the size of quantum or add

additional quanta for TDM
– Nor add more frequencies in FDM

Statistical Multiplexing

• The physical link is shared over time (like TDM)
• But does not have fixed pattern. This is called

statistical multiplexing
– Sequence of A & B packets are sent on demand, not

predetermined slots

A

B

C10 Mb/s
Ethernet

1.5 Mb/s

D E

statistical multiplexing

queue of packets
waiting for output

link

Pros and Cons
• Assumption: traffic is largely bursty

• Pros: Resources are not wasted when hosts are idle

• Cons: No guarantee flows would have their turns to
transmit

• Some possible fixes:
– Limit maximum packet size
– Scheduling which packets got transmitted, e.g., fair

queuing

Maximum Packet Size

• Divide an application message into blocks of
data à packets
– Names at different layer: Segments, frames

• Maximum packet size limit
– Flows sent on demand
–Must give each flow its turn to send
– Solution: defines an upper bound on the size of the

block of data

Packet scheduling

• Scheduling: which packet to send
– First come first serve (FIFQ)
–Weighted fair queuing

Switching vs multiplexing

• TDM and FDM are used in circuit switching
networks
– Require a setup as max # of flows is fixed

• SM is used in packet switching networks

Statistical switching versus circuit
switching

• 1 Mb/s link
• each user:

– 100 kb/s when �active�
– active 10% of time

• circuit-switching: fixed capacity
– 10 users

• statistical switching
– When they are 35 users
– Not congested when 0, 1, …, 10

users are active at the same time
– Congested = 1-

∑"#$%$ &'(" 0.1"0.9'(-"<=
0.000424298

Statistical switching allows more users to use the network!

N users
1 Mbps link

3. Support for common services
• Application developers want a network to provide

services that make application programs communicate
with each other, not just sending packets
– E.g. reliably delivering an email message from a sender to a

receiver

• Many complicated things need to happen
– Can you name a few?

• Design choices
– Application developers build all functions they need
– Network provides common services à a layered network

architecture
• Build it once, and shared many times

• Interactive
request/reply

• Streaming of data
• Bulk data transfer
• …

• Key challenges: what services/channels to provide that can satisfy
most applications at lowest costs?

• Approach: identify common patterns, then decide
– What functions to implement
– Where to implement those functions

4. Manageability

• Manage the network as it grows and when
things go wrong

• An open research challenge
– Datacenter networks
– Backbones
– Home networks
• IP cameras, printers, network attached storage

– Software defined networking

Overview

• Design requirements of the original Internet

• Concepts of Network Architectures
– How are we going to meet those requirements?

Network Architectures

• Many ways to build a network

• Use network architectures to characterize
different ways of building a network

• The general blueprints that guide the design
and implementation of networks are referred to
as network architectures

Central concepts

• Layering
• Protocols

33

A layered architecture

• Many sub-tasks need to be accomplished
– Find a path to the destination, reliably transfer

information
• The complexity of the communication task is

reduced by using multiple protocol layers:
• Each protocol is implemented independently
• Each protocol is responsible for a specific subtask
• Protocols are grouped in a hierarchy

• The old divide-and-conquer principle!

Layering

• An abstraction to handle complexity
– A unifying model that capture important aspect of a

system
– Encapsulate the model in an object that has an

interface for others to interact with
– Hide the details from the users of the object

Not so strict

Advantages of layering

• Simplify the design tasks
– Each layer implements simpler functions

• Modular design
– Can provide new services by modifying one layer

Protocols

• The abstract objects that make up the layers of a network
system are called protocols

• Each protocol defines two different interfaces
– Service interface
– Peer interface

A protocol graph

• Peer-to-peer communication is indirect
– Except at the hardware level

• Potentially multiple protocols at each level

• Show the suite of protocols that make up a
network system with a protocol graph

A sample protocol graph

Protocol standardization

• Standard bodies such as IETF govern procedures
for introducing, validating, and approving
protocols
– The Internet protocol suite uses open standard

• Set of rules governing the form and content of a
protocol graph are called a network architecture

We reject kings, presidents, and
voting. We believe in rough
consensus and running code

- David Clark

Encapsulation
• Upper layer sends a message using the service

interface

• A header, a small data structure, to add information
for peer-to-peer communication, is attached to the
front message
– Sometimes a trailer is added to the end

• Message is called payload or data

• This process is called encapsulation

Multiplexing & Demultiplexing

• Same ideas apply up and down the protocol graph

Examples of Network
Architectures

45

The Internet Protocol Suite

• The Internet architecture has four layers: Application, Transport, Network,
and Data Link Layer (logical link layer, and physical link layer)

• Sending or receiving a packet from end systems (hosts) may involve
actions of all four layers. Packet forwarding by (Routers) only involve the
bottom three layers.

OS

User space

Link layer

46

Functions of the Layers

• Data Link Layer: (layer 2)
– Service: Reliable transfer of frames over a link

Media Access Control on a LAN
– Functions: Framing, media access control, error checking

• Network Layer: (layer 3)
– Service: Move packets from source host to destination host
– Functions: Routing, addressing

• Transport Layer: (layer 4)
– Service: Delivery of data between hosts
– Functions: Connection establishment/termination, error control,

flow control
• Application Layer:

– Service: Application specific (delivery of email, retrieval of
HTML documents, reliable transfer of file)

– Functions: Application specific

47

Assignment of Protocols to
Layers

Network
Layer

Routing Protocols

PIM

OSPF

RIP

Application
Layer

Data Link
Layer

IP

ARP Ethernet

Network
Interface

Transport
Layer

TCP UDP

SNMPFTP DNSHTTP

ICMP

IGMP

ping
application Telnet

DHCP

The hourglass model

49

Use Encapsulation and Decapsulation to
demultiplex

• Encapsulation: As data is moving down the protocol stack, each protocol is adding
layer-specific control information.

• Decapsulation is the reverse process.

HTTP

TCP

IP

Ethernet

User data

User dataHTTP Header

TCP Header

TCP HeaderIP Header

TCP HeaderIP HeaderEthernet
Header

Ethernet
Trailer

IP datagram

TCP segment

Ethernet frame

User dataHTTP Header

User dataHTTP Header

User dataHTTP Header

50

TCP/IP Suite vs OSI Reference Model

Application
Layer

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

(Data) Link
Layer

Physical
Layer

Transport
Layer

Network
Layer

OSI
Reference

Model

(Data) Link
Layer

TCP/IP Suite

The TCP/IP protocol stack does not
define the lower layers of a complete
protocol stack

• International Telecommunications Union (ITU) publishes
protocol specs based on the OSI reference model
– X dot series

• Physical layer: handles raw bits
• Data link layer: aggregate bits to frames. Network adaptors

implement it
• Network layer: handles host-to-host packet delivery. Data

units are called packets
• Transport: implements process channel. Data units are called

messages
• Session layer: handles multiple transport streams belong to the

same applications
• Presentation layer: data format, e.g., integer format, ASCII

string or not
• Application layer: application specific protocols

Summary

• The design requirement of the Internet
• Network architectures that meet the design

requirement
• New terms
– Scalability, nodes, links, switches, routers,

multiplexing/demultiplexing, circuit switching,
packet switching, statistical multiplexing, layering,
protocols, encapsulation/decapsulation, network
architetures

End-to-End Argument
• Extremely influential

• �…functions placed at the lower levels may be
redundant or of little value when compared to
the cost of providing them at the lower
level…�

• �…sometimes an incomplete version of the
function provided by the communication
system (lower levels) may be useful as a
performance enhancement…�

The counter argument
• Modularity argument:

– It is tempting to implement functions at lower layers so
that higher level applications can reuse them

• The end-to-end argument:
– �The function in question can completely and correctly be

implemented only with the knowledge and help of the
application standing at the end points of communication.�

– �Centrally-provided versions of each of those functions
will be incomplete for some applications, and those
applications will find it easier to build their own version of
the functions starting with datagrams.�

Techniques used by the authors
• The authors made their argument by analyzing

examples
– Reliable file transfer
– Delivery guarantees
– Secure data transmission
– Duplicate message suppression
– FIFO
– Transaction management
– Can you think of more examples to argue for or

against the end-to-end argument?
• Can be applied generally to system design

Example: Reliable File Transfer

• Solution 1: make each step reliable, and
then concatenate them
– Uneconomical if each step has small error

probability

OS

Appl.

OS

Appl.

Host A Host B

Network

Example: Reliable File Transfer

• Solution 2: end-to-end check and retry
– Correct and complete

OS

Appl.

OS

Appl.

Host A Host B

OKNetwork

Example: Reliable File Transfer

• An intermediate solution: the communication
system provides internally, a guarantee of
reliable data transmission, e.g., a hop-by-hop
reliable protocol
– Only reducing end-to-end retries
– No effect on correctness

OS

Appl.

OS

Appl.

Host A Host B

OKNetwork

Question: should lower layer play a part
in obtaining reliability?

• Answer: it depends
– Example: extremely lossy link

• One in a hundred packets will be corrupted
• 1K packet size, 1M file size
• Prob of no end-to-end retry: (1-1/100)1000 ~ 4.3e-5

Performance enhancement

• �put into reliability measures within the
data communication system is seen to be
an engineering tradeoff based on
performance, rather than a requirement for
correctness.�

Performance tradeoff is complex

• Example: reliability over a lossy link using
retries

Performance tradeoffs
• Example: reliability over a lossy link using retries

– But they wont help real time applications, applications
with built-in error correction mechanisms

• Tradeoffs:
– Applications that do not need them will pay the cost

anyway
– Low-level subsystems may not have as much

information as the higher levels to do the job as
efficiently

End-to-End Argument: Discussion
• The original end-to-end argument emphasizes

correctness & completeness, not
– complexity: is complexity at edges result in a
�simpler� architecture?

– evolvability, ease of introduction of new
functionality: ability to evolve because
easier/cheaper to add new edge applications
than change routers?

– Technology penetration: simple network layer
makes it �easier� for IP to spread everywhere

Summary: End-to-End Arguments

• If the application can do it, don�t do it at a
lower layer -- anyway the application
knows the best what it needs
– add functionality in lower layers iff it is (1)

used and improves performances of a large
number of applications, and (2) does not hurt
other applications

• Success story: Internet
– a minimalist design

Historic design
• The original TCP/IP design paper

– A protocol for packet network intercommunication by Cerf and Karn,
1974

– An excellent case study

Goal: Interconnecting different networks

• Many different types of
packet switch networks
– ARPANET, packet

satellite networks,
ground-based packet
radio networks, and
other networks.

• Each has
– Hosts, packet switches,

processes
– A protocol for

communication
• Q: what would you do

differently given such a
design task?

Challenges

1. Different addressing schemes and host
communication protocols

2. Different MTUs
3. Different success or failure indicators
4. End-to-end reliability: failures may occur at

each subnet
5. Different control:

• Status information, routing, fault
detection/isolation

Inter- networking

• Gateways interface different networks
• A uniform data transmission control protocol

(TCP)
• Uniform addressing (IP)

Inter-networking design alternatives

• Design alternative 1:

• Design alternative 2:

Inter-networking design alternatives

• Design alternative 1: one unified technology, a multi-
media network
– Restrictive
– Not pratical: existing networks can�t be connected

• Design alternative 2: each host implements all other
protocols
– Expensive
– Difficult to accommodate future developement

Maximum transmission unit size

• Solution: fragmentation
• +
• -

• Who reassembles?

• Design alternatives:

Maximum transmission unit size
• Fragmentation: gateways fragment packets

into smaller units when MTU reduces
• + packet sizes may vary in different networks
• - complexity

• Who reassembles?
• Destination
• + gateway needs not handle the complexity, adding

costs to all packets
• + no need to reassemble again at downstream

MTU design alternative

• One max MTU for all networks
– + simple
- -. coupling: can�t isolate internal max packet size

of one network from other networks.
- E.g. If a network can only support 512 bytes, then all

networks can�t exceed 512 bytes
- - difficult to increase, requires agreements from all

networks
- - packet size may increase during transmission

without source host knowing it.

Process Level Communication

• Multiplexing and de-multiplexing messages
among processes

• Design considerations: boundaries
– Case 1: No process boundaries
• +
• -

– Case 2: Separate messages from different
processes
• +
• -

Process Level Communication

• Design: multiplexing and de-multiplexing messages
among processes into segment streams

• Design considerations: boundaries
– Case 1: No process boundaries

• + More efficient, packing msgs to full segments
• - interferences between processes

– Case 2: Separate msgs from different processes
• + process isolation
• - overhead

Addressing format

• A network address understood by all gateways
– 8 bits

• A TCP identifier to identify a host
– 16 bits

• Port number to identify a destination process
– 16 bits

Other design considerations of TCP
• End to end reliability: sliding window

• Flow control: to prevent receiver buffer overflow
• Connection
– Three-way SYN hand-shakes
– Close

What are different today?

• Or what would you do differently?

What are different today?

• TCP/IP separation
– Allows variety of services

• TCP implements byte stream interface
– No notion of messages
– Simple, and generic

• TCP has congestion control
– We�ll learn why soon

• Different addressing format, but same hierarchy
• It�s amazing how much they got it right!

