
CompSci 356: Computer Network
Architectures

Lecture 3: Network Architecture
Examples and Lab 1

Xiaowei Yang
xwy@cs.duke.edu

Overview

• The Internet Architecture
• OSI Network Architecture

• Lab 1 Released
• Due: Jan 29, 11:59pm via Saikai

Network Architectures

• Many ways to build a network

• Use network architectures to characterize
different ways of building a network

• The general blueprints that guide the design
and implementation of networks are referred to
as network architectures

Protocol standardization

• Standard bodies such as IETF govern procedures
for introducing, validating, and approving
protocols
– The Internet protocol suite uses open standard

• Set of rules governing the form and content of a
protocol graph are called a network architecture

We reject kings, presidents, and
voting. We believe in rough
consensus and running code

- David Clark

Encapsulation
• Upper layer sends a message using the service

interface

• A header, a small data structure, to add information
for peer-to-peer communication, is attached to the
front message
– Sometimes a trailer is added to the end

• Message is called payload or data

• This process is called encapsulation

Multiplexing & Demultiplexing

• Same ideas apply up and down the protocol graph
• Header information is used for demultiplexing

Examples of Network
Architectures

10

The Internet Protocol Suite

• The Internet architecture has four layers: Application, Transport, Network,
and Data Link Layer (logical link layer, and physical link layer)

• Sending or receiving a packet from end systems (hosts) may involve
actions of all four layers. Packet forwarding by (Routers) only involves the
bottom three layers. By switches only involves the link layer.

OS

User space

Link layer

11

Functions of the Layers
• Data Link Layer: (layer 2)

– Service: Reliable transfer of frames over a link
Media Access Control on a LAN

– Functions: Framing, media access control, error checking

• Network Layer: (layer 3)
– Service: Move packets from source host to destination host
– Functions: Routing, addressing

• Transport Layer: (layer 4)
– Service: Delivery of data between hosts
– Functions: Connection establishment/termination, error control, flow

control

• Application Layer:
– Service: Application specific (delivery of email, retrieval of

HTML documents, reliable transfer of file)
– Functions: Application specific

12

Assignment of Protocols to Layers

Network
Layer

Routing Protocols

PIM

OSPF

RIP

Application
Layer

Data Link
Layer

IP

ARP Ethernet

Network
Interface

Transport
Layer

TCP UDP

SNMPFTP DNSHTTP

ICMP

IGMP

ping
application Telnet

DHCP

The hourglass model

14

Use Encapsulation and Decapsulation to
demultiplex

• Encapsulation: As data is moving down the protocol stack, each protocol is adding
layer-specific control information.

• Decapsulation is the reverse process.

HTTP

TCP

IP

Ethernet

User data

User dataHTTP Header

TCP Header

TCP HeaderIP Header

TCP HeaderIP HeaderEthernet
Header

Ethernet
Trailer

IP datagram

TCP segment

Ethernet frame

User dataHTTP Header

User dataHTTP Header

User dataHTTP Header

15

TCP/IP Suite vs OSI Reference Model

Application
Layer

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

(Data) Link
Layer

Physical
Layer

Transport
Layer

Network
Layer

OSI
Reference

Model

(Data) Link
Layer

TCP/IP Suite

The TCP/IP protocol stack does not
define the lower layers of a complete
protocol stack

• International Telecommunications Union (ITU) publishes
protocol specs based on the OSI reference model
– X dot series

• Physical layer: handles raw bits
• Data link layer: aggregate bits to frames. Network adaptors

implement it
• Network layer: handles host-to-host packet delivery. Data

units are called packets
• Transport: implements process channel. Data units are called

messages
• Session layer: handles multiple transport streams belong to the

same applications
• Presentation layer: data format, e.g., integer format, ASCII

string or not
• Application layer: application specific protocols

Summary

• The design requirement of the Internet
• Network architectures that meet the design

requirement
• New terms
– Scalability, nodes, links, switches, routers,

multiplexing/demultiplexing, circuit switching,
packet switching, statistical multiplexing, layering,
protocols, encapsulation/decapsulation, network
architetures

The History of the Internet

Internet History

• 1961: Leonard Kleinrock -
queueing theory shows
effectiveness of packet-
switching

• 1964: Paul Baran - packet-
switching in military nets

• 1967: ARPAnet conceived by
Advanced Research Projects
Agency

• 1969: first ARPAnet node
operational

• 1972:
– ARPAnet demonstrated

publicly
– NCP (Network Control

Protocol) first host-host
protocol
• No TCP/IP yet

– first e-mail program
– ARPAnet has 15 nodes

1961-1972: Early packet-switching principles

https://www2.cs.duke.edu/courses/fall18/compsci514/slides/IMG_1342.MOV

Internet in 1971

Internet History

• 1970: ALOHAnet satellite
network in Hawaii

• 1973: Metcalfe�s PhD thesis
proposes Ethernet

• 1974: Cerf and Kahn -
architecture for interconnecting
networks (Turing award work)

• late70�s: proprietary
architectures: DECnet, SNA,
XNA

• late 70�s: switching fixed
length packets (ATM
precursor)

• 1979: ARPAnet has 200 nodes

Cerf and Kahn’s internetworking
principles:
– minimalism, autonomy - no

internal changes required to
interconnect networks

– best effort service model
– stateless routers
– decentralized control

define today�s Internet architecture

1972-1980: Internetworking, new and proprietary
nets

Internet History

• Early 1990�s: ARPAnet
decommissioned

• 1991: NSF lifts restrictions on
commercial use of NSFnet
(decommissioned, 1995)

• early 1990s: Web
– hypertext [Bush 1945,

Nelson 1960�s]
– HTML, HTTP: Berners-Lee
– 1994: Mosaic, later Netscape
– late 1990�s:

commercialization of the
Web

Late 1990�s – 2000�s:
• more killer apps: instant

messaging, P2P file sharing
• network security to forefront
• est. 50 million host, 100

million+ users
• backbone links running at

Gbps

1990, 2000�s: commercialization, the Web,
new apps

Internet history

• 2000-now:
– Cloud computing
–Mobile computing
– Social applications
– Internet of Things
– Smart everything
– Virtual reality
–….

END-TO-END ARGUMENTS
IN SYSTEM DESIGN

By J.H. Saltzer, D.P. Reed and D.D.
Clark

End-to-End Argument
• Extremely influential

• �…functions placed at the lower levels may be
redundant or of little value when compared to
the cost of providing them at the lower
level…�

• �…sometimes an incomplete version of the
function provided by the communication
system (lower levels) may be useful as a
performance enhancement…�

The counter argument
• Modularity argument:

– It is tempting to implement functions at lower layers so
that higher level applications can reuse them

• The end-to-end argument:
– �The function in question can completely and correctly be

implemented only with the knowledge and help of the
application standing at the end points of communication.�

– �Centrally-provided versions of each of those functions
will be incomplete for some applications, and those
applications will find it easier to build their own version of
the functions starting with datagrams.�

Techniques used by the authors
• The authors made their argument by analyzing

examples
– Reliable file transfer
– Delivery guarantees
– Secure data transmission
– Duplicate message suppression
– FIFO
– Transaction management
– Can you think of more examples to argue for or

against the end-to-end argument?
• Can be applied generally to system design

Example: Reliable File Transfer

• Solution 1: make each step reliable, and
then concatenate them
– Uneconomical if each step has small error

probability

OS

Appl.

OS

Appl.

Host A Host B

Network

Example: Reliable File Transfer

• Solution 2: end-to-end check and retry
– Correct and complete

OS

Appl.

OS

Appl.

Host A Host B

OKNetwork

Example: Reliable File Transfer

• An intermediate solution: the communication
system provides internally, a guarantee of
reliable data transmission, e.g., a hop-by-hop
reliable protocol
– Only reducing end-to-end retries
– No effect on correctness

OS

Appl.

OS

Appl.

Host A Host B

OKNetwork

Question: should lower layer play a part
in obtaining reliability?

• Answer: it depends
– Example: extremely lossy link

• One in a hundred packets will be corrupted
• 1K packet size, 1M file size
• Prob of no end-to-end retry: (1-1/100)1000 ~ 4.3e-5

Performance enhancement

• �put into reliability measures within the
data communication system is seen to be
an engineering tradeoff based on
performance, rather than a requirement for
correctness.�

Summary: End-to-End Arguments

• If the application can do it, don�t do it at a
lower layer -- anyway the application
knows the best what it needs
– add functionality in lower layers iff it is (1)

used and improves performances of a large
number of applications, and (2) does not hurt
other applications

• Success story: Internet
– a minimalist design

CompSci 356: Computer Network
Architectures

Lecture 3: Introduction to labs

Xiaowei Yang
xwy@cs.duke.edu

Lab overview

• Three labs
– An echo server
– A simple router
– Dynamic routing

• C/C++

Set up the lab environment

1. Download and install VirtualBox
2. Install the provided virtual machine image
– Wireshark
– Mininet

3. Write your code in your favorite editor
4. Compile, debug
– printf is your best friend

Lab 1

• Write an echo server using TCP sockets

Application Programming Interface
(Sockets)

• Socket Interface was originally provided
by the Berkeley distribution of Unix
- Now supported in virtually all

operating systems

• Each protocol provides a certain set of
services, and the API provides a syntax
by which those services can be invoked
in this particular OS

A layered architecture
Client

Application
Layer

Transport
Layer

Network
Layer

(Data) Link
Layer

Server

Application
Layer

Transport
Layer

Network
Layer

(Data) Link
Layer

Data

Socket

• What is a socket?
– The point where a local application process attaches to the

network
– An interface between an application and the network
– An application creates the socket

Socket Interface

• The interface defines operations for
– Creating a socket
– Attaching a socket to the network
– Sending and receiving messages through the socket
– Closing the socket

Socket

• Socket Family
– PF_INET denotes the Internet family
– PF_UNIX denotes the Unix pipe facility
– PF_PACKET denotes direct access to the network

interface (i.e., it bypasses the TCP/IP protocol stack)

• Socket Type
– SOCK_STREAM is used to denote a byte stream
– SOCK_DGRAM is an alternative that denotes a

message oriented service, such as that provided by
UDP

Connection-oriented example
(TCP)

Server

Socket()

Bind()
Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishmt.

Data (request)

Data (reply)

[Paul Barford]

Creating a Socket

int sockfd = socket(address_family, type, protocol);

• The socket number returned is the socket
descriptor for the newly created socket

• int sockfd = socket (PF_INET, SOCK_STREAM, 0);
• int sockfd = socket (PF_INET, SOCK_DGRAM, 0);

The combination of PF_INET and
SOCK_STREAM implies TCP

Client-Serve Model with TCP

Server
–Passive open
–Prepares to accept connection, does not

actually establish a connection

Server invokes
int bind (int socket, struct sockaddr *address,

int addr_len)
int listen (int socket, int backlog)
int accept (int socket, struct sockaddr *address,

int *addr_len)

Client-Serve Model with TCP

Bind
– Binds the newly created socket to the specified

address i.e. the network address of the local
participant (the server)

– Address is a data structure which combines IP and
port

Listen
– Defines how many connections can be pending on

the specified socket

Client-Serve Model with TCP

Accept
–Carries out the passive open
–Blocking operation
• Does not return until a remote participant

has established a connection
•When it does, it returns a new socket that

corresponds to the new established
connection and the address argument
contains the remote participant�s address

Client-Serve Model with TCP

Client
– Application performs active open
– It says who it wants to communicate with

Client invokes
int connect (int socket, struct sockaddr *address,
int addr_len)

Connect
– Does not return until TCP has successfully

established a connection at which application is
free to begin sending data

– Address contains remote machine�s address

Client-Serve Model with TCP

In practice
–The client usually specifies only remote

participant�s address and let�s the system
fill in the local information
–Whereas a server usually listens for

messages on a well-known port
–A client does not care which port it uses for

itself, the OS simply selects an unused one

Client-Serve Model with TCP

Once a connection is established, the
application process invokes two operation

int send (int socket, char *msg, int msg_len,
int flags)

int recv (int socket, char *buff, int buff_len,
int flags)

Using Ports to Identify Services

[CMU 15-213]

Client

Client host

Server host 128.2.194.242

Kernel

Web Server
(port 80)

Service request for
128.2.194.242:80
(i.e., the Web server)

(connect request) Echo Server
(port 7)

Client

Client host

Kernel

Web Server
(port 80)

Service request for
128.2.194.242:7
(i.e., the Echo server)

(connect request) Echo Server
(port 7)

Example Application: Client
#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_LINE 256

int main(int argc, char * argv[])

{

FILE *fp;

struct hostent *hp;

struct sockaddr_in sin;

char *host;

char buf[MAX_LINE];

int s;

int len;

if (argc==2) {

host = argv[1];

}

else {

fprintf(stderr, "usage: simplex-talk host\n");

exit(1);

}

Example Application: Client
/* translate host name into peer�s IP address */
hp = gethostbyname(host);
if (!hp) {

fprintf(stderr, "simplex-talk: unknown host: %s\n", host);
exit(1);

}
/* build address data structure */
bzero((char *)&sin, sizeof(sin));
sin.sin_family = AF_INET;
bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);
sin.sin_port = htons(SERVER_PORT);
/* active open */
if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("simplex-talk: socket");
exit(1);

}
if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0) {

perror("simplex-talk: connect");
close(s);
exit(1);

}
/* main loop: get and send lines of text */
while (fgets(buf, sizeof(buf), stdin)) {

buf[MAX_LINE-1] = �\0�;
len = strlen(buf) + 1;
send(s, buf, len, 0);

}
}

Example Application: Server
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#define SERVER_PORT 5432
#define MAX_PENDING 5
#define MAX_LINE 256

int main()
{

struct sockaddr_in sin;
char buf[MAX_LINE];
int len;
int s, new_s;
/* build address data structure */
bzero((char *)&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(SERVER_PORT);

/* setup passive open */
if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("simplex-talk: socket");
exit(1);

}

Example Application: Server
if ((bind(s, (struct sockaddr *)&sin, sizeof(sin))) < 0) {

perror("simplex-talk: bind");
exit(1);

}
listen(s, MAX_PENDING);
/* wait for connection, then receive and print text */
while(1) {

if ((new_s = accept(s, (struct sockaddr *)&sin, &len)) < 0) {
perror("simplex-talk: accept");
exit(1);

}
while (len = recv(new_s, buf, sizeof(buf), 0))

fputs(buf, stdout);
close(new_s);

}
}

Socket Address Structs
• Internet-specific socket address

#include <netinit/in.h>

struct sockaddr_in {
unsigned short sin_family; /* address family (always AF_INET)*/
unsigned short sin_port; /* port num in network byte order */
struct in_addr sin_addr /* IP addr in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */

};

[CMU 15-213]

Big and Little Endian
• Describe the order in which a sequence of bytes is stored

in memory
• Big Endian Byte Order
– The most significant byte (the "big end") of the data is placed at

the byte with the lowest address
– IBM's 370 mainframes, most RISC-based computers, TCP/IP
– Network byte order in TCP/IP

• Little Endian Byte Order
– The least significant byte (the "little end") of the data

is placed at the byte with the lowest address
– Intel processors, DEC Alphas

Big and Little Endian

32-bit unsigned integer: 0x12345678
Memory Address Big-Endian

Byte Order
Little-Endian
Byte Order

1000 12 78
1001 34 56
1002 56 34
1003 78 12

Big and Little Endian
#include <stdio.h>
#include <stdlib.h>
int main()
{

short int a = 0x1234;
char *p = (char *)&a;

printf("p=%#hhx\n", *p);

if (*p == 0x34)
printf("little endian\n");

else if (*p == 0x12)
printf("big endian\n");

else
printf("unknown endian\n");

return 0;
}

