
CompSci 356: Computer Network
Architectures

Lecture 4: Link layer: Encoding,
Framing, and Error Detection

Ref. Chap 2.2, 2.3,2.4

Xiaowei Yang
xwy@cs.duke.edu

Overview
• Link layer functions
– Encoding
– Framing
– Error detection

The simplest network is one link plus
two nodes

Hi Alice…

?

Recap: Put bits on the wire

• Each node (e.g. a PC) connects to a
network via a network adaptor.

• The adaptor delivers data between a
node�s memory and the network.

• A device driver is the program
running inside the node that
manages the above task.

• At one end, a network adaptor encodes
and modulates a bit into signals on a
physical link.

• At the other end, a network adaptor reads
the signals on a physical link and
converts it back to a bit.

Metrics to describe a link

• Bandwidth
–Why are some links slow/fast?

• Latency/delay
• Transmission delay (serialization)
– Store and forward

• Delay * bandwidth product
• Throughput
– How long does it take to send a file?

Link-layer functions

• Most functions are completed by adapters
– Encoding
– Framing
– Error detection
– Reliable transmission (next lecture)

Encoding

• Implemented in hardware
• High and low signals, ignore modulation
• Simplest one: 1 to high, 0 to low

Non-return to zero
• 1 to high, 0 to low

• Not good for decoding
– Baseline wander
– Clock recovery

Solution 1: Nonreturn to zero inverted
(NRZI)
• A transition from current signal encodes 1
• No transition encodes 0
• Does it solve all problems?
– Not for consecutive 0s

NRZI

Solution 2: Manchester encoding
• Clock XOR NRZ
– 1: high à low; 0: low à high

– Drawback: doubles the rate at which signals are sent
• Baud rate: signal change rate
• Bit rate = half of baud rate. 50% efficient

Final solution: 4B/5B

• Key idea: insert extra bits to break up long sequences of
0s or 1s

• 4-bit of data are encoded in a 5-bit code word
– 16 data symbols, 32 code words
– At most one leading 0, two trailing 0s
– For every pair of codes, no more than three consecutive 0s

• 5-bit codes are sent using NRZI

• Exercise:
– 00101101

• What�s the high/low
signal sequence?

• Efficiency?

4-bit data
symbol

5-bit code

0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
0101 01011
0110 01110
0111 01111
1000 10010
1001 10011

4-bit data
symbol

5-bit code

1010 10110
1011 10111
1100 11010
1101 11011
1110 11100
1111 11101

Overview

• Link layer functions
– Encoding
– Framing
– Error detection

Framing

• Now we’ve seen how to encode bitstreams
• But nodes send blocks of data (frames)

– A�s memory à adaptor à adaptor à B�s memory

• An adaptor must determine the boundary of frames

Block of data

Variety of Framing Protocols
• Framing
– Why is it an important task of an adaptor?

• Frames may belong to different apps
• Need to decide when to deliver them to apps

• Design choices
– Byte-oriented protocols

• Sentinel approach
• Byte-counting approach
• BISYNC, PPP, DDCMP

– Bit-oriented protocols
– Clock-based framing

Byte-oriented protocols: the sentinel
approach

• Frame: a collection of bytes (characters)
• SYN, ETX
– What if special characters appear in a data stream?

• Escape character: DLE
• Character stuffing

•Transmitted from the leftmost bit
•Binary Synchronous Communication (BISYNC) by IBM in late 60s

Point-to-Point Protocol (PPP)

• Internet dialup access
– RFC 1661, 1994

• Flag: 01111110;
• Address & Control: default
• Protocol: de-multiplexing
– IP, Link Control Protocol, …,

• Checksum: two or four bytes
• Link Control Protocol
– Set up and terminate the link
– Negotiate other parameters
• maximum receive unit

Byte-oriented protocols: the byte
counting approach

• A byte count field
• The corruption of the count field
– The sentinel approach: Corrupted ETX

•DDCMP by DECNET (Digital Data Communication Message Protocol)

Bit-oriented protocols

• Frame: a collection of bits
• Beginning/ending sequence: 01111110
• Idle sequence:
– 01111110 or idle flags 11111111

• Bit-stuffing for data
• Frames are of variable length

•High-level data link control (HDLC) protocol

The bit-stuffing algorithm

• Bit-stuffing for data
– Sender: inserts a 0 after every five consecutive 1�s
–Receiver: after five consecutive 1�s,
• If the next bit is 0, removes it
• If the next bit is 1
–If the next bit is 0 (i.e. the last 8 bits are

01111110), then frame ends
–Else error; discard frame, wait for next

01111110 to receive

An exercise

• Suppose a receiver receives the following bit
sequence
– 011010111110101001111111011001111110

• What�s the resulting frame after removing
stuffed bits? Indicate any error.

Clock-based Framing

• Synchronous Optical Network (SONET)
• Each frame is 125 us long, 810 bytes = 125 us

* 51.84Mbps
• Clock synchronization
–special pattern repeated enough times

•STS-1/OC-1 frame

•51.840Mbps

•The slowest SONET link

Synchronized timeslots as placeholder

• Real frame data may float inside

Overview

• Link layer functions
– Encoding
– Framing
– Error detection

Error detection

• Error detection code adds redundancy
– Analogy: sending two copies
– Parity
– Checksum
– CRC

• Error correcting code

Two-dimensional parity

• Even parity bit
– Make an even number of 1s in each row and column

• Detect all 1,2,3-bit errors, and most 4-bit errors

A sample frame of six bytes

Internet checksum algorithm

• Basic idea (for efficiency)
– Add all the words transmitted and then send the sum.
– Receiver does the same computation and compares the

sums

• IP checksum
– Adding 16-bit short integers using 1�s complement

arithmetic
– Take 1�s complement of the result

• Used by lab 2 to detect errors

1�s complement arithmetic

• -x is each bit of x inverted
• If there is a carry bit, add 1 to the sum
• [-2^(n-1)-1, 2^(n-1)-1]
• Example: 4-bit integer
– -5 + -2
– +5: 0101; -5: 1010;
– +2: 0010; -2: 1101;
– -5 + -2 = 1010+1101 = 0111 + one carrier bit;
–à1000 = -7

Calculating the Internet checksum
• u_short cksum (u_short *buf, int count) {

register u_long sum = 0;

while (count--) {
sum += *buf++;
if (sum & 0xFFFF0000) {

/* carry occurred. So wrap around */
sum &= 0xFFFF;
sum++;

}
} // one’s complement sum

return ~(sum & 0xFFFF); // one’s complement of the sum

}

Verifying the checksum

• Adds all 16-bit words together, including the
checksum

• 0: correct
• 1: errors

Remarks

• Can detect 1 bit error
• Not all two-bits
• Efficient for software implementation

Cyclic Redundancy Check

• Cyclic error-correcting codes
• High-level idea:
– Represent an n+1-bit message with an n degree polynomial

M(x)
– Divide the polynomial by a degree-k divisor polynomial

C(x)
– k-bit CRC: remainder
– Send Message + CRC that is dividable by C(x)

Polynomial arithmetic modulo 2

– B(x) can be divided by C(x) if B(x) has higher
degree

– B(x) can be divided once by C(x) if of same degree
• x^3 + 1 can be divided by x^3 + x^2 + 1
• The remainder would be 0*x^3 + 1*x^2 + 0*x^1 +

0*x^0 (obtained by XORing the coefficients of each
term)

– Remainder of B(x)/C(x) = B(x) – C(x)
– Substraction is done by XOR each pair of

matching coefficients

CRC algorithm

1. Multiply M(x) by x^k. Add k zeros to
Message. Call it T(x)

2. Divide T(x) by C(x) and find the remainder
3. Send P(x) = T(x) – remainder
• Append remainder to T(x)

• P(x) dividable by C(x)

An example

• 8-bit msg
– 10011010

• Divisor (3bit CRC)
– 1101

Msg sent: 10011010101

How to choose a divisor

• Arithmetic of a finite field
• Intuition: unlikely to be divided evenly by an

error
• Corrupted msg is P(x) + E(x)
• If E(x) is single bit, then E(x) = xi

• If C(x) has the first and last term nonzero, then
detects all single bit errors

• Find C(x) by looking it up in a book

Summary

• Link layer functions
– Encoding
• NRZ, NRZI, Manchester, 4B/5B

– Framing
• Byte-oriented, bit-oriented, time-based
• Bit stuffing

– Error detection
• Parity, checkshum, CRC

