
CompSci 356: Computer Network
Architectures

Lecture 6: Link layer: Error
Detection and Reliable transmission

Ref. Chap 2.4, 2.5

Xiaowei Yang
xwy@cs.duke.edu

Overview
• Link layer functions
– Encoding
• NRZ, NRZI, Manchester, 4B/5B

– Framing
• Byte-oriented, bit-oriented, time-based
• Bit stuffing

– Error detection
• Parity, checkshum, CRC

– Reliability
• FEC, sliding window

Link-layer functions

• Most functions are completed by adapters
– Encoding
– Framing
– Error detection
– Reliable transmission

Error detection

• Error detection code adds redundancy
– Analogy: sending two copies
– Parity
– Checksum
– CRC

• Error correcting code

Cyclic Redundancy Check

• Cyclic error-correcting codes
• High-level idea:
– Represent an n+1-bit message with an n degree polynomial

M(x)
– Divide the polynomial by a degree-k divisor polynomial

C(x)
– k-bit CRC: remainder
– Send Message + CRC that is dividable by C(x)

Polynomial arithmetic modulo 2

– B(x) can be divided by C(x) if B(x) has higher
degree

– B(x) can be divided once by C(x) if of same degree
• x^3 + 1 can be divided by x^3 + x^2 + 1
• The remainder would be 0*x^3 + 1*x^2 + 0*x^1 +

0*x^0 (obtained by XORing the coefficients of each
term)

– Remainder of B(x)/C(x) = B(x) – C(x)
– Substraction is done by XOR each pair of

matching coefficients

CRC algorithm

1. Multiply M(x) by x^k. Add k zeros to
Message. Call it T(x)

2. Divide T(x) by C(x) and find the remainder
3. Send P(x) = T(x) – remainder
• Append remainder to T(x)

• P(x) dividable by C(x)

An example

• 8-bit msg
– 10011010

• Divisor (3bit CRC)
– 1101

Msg sent: 10011010101

How to choose a divisor

• Arithmetic of a finite field
• Intuition: unlikely to be divided evenly by an

error
• Corrupted msg is P(x) + E(x)
• If E(x) is single bit, then E(x) = xi

• If C(x) has the first and last term nonzero, then
detects all single bit errors

• Find C(x) by looking it up in a book

Overview
• Link layer functions
– Encoding
• NRZ, NRZI, Manchester, 4B/5B

– Framing
• Byte-oriented, bit-oriented, time-based
• Bit stuffing

– Error detection
• Parity, checkshum, CRC

– Reliability
• FEC, sliding window

Reliable transmission
• What to do if a receiver detects bit errors?
• Two high-level approaches
– Forward error correction (FEC)
– Retransmission
• Acknowledgements

– Can be “piggybacked” on data packets
• Timeouts
• Also called Automatic repeat request (ARQ)

Stop-and-wait

• Send one frame, wait
for an ack, and send the
next

• Retransmit if times out

• Note in the last figure
(d), there might be
confusion: a new frame,
or a duplicate?

Sequence number

• Add a sequence number
to each frame to avoid
the ambiguity

Stop-and-wait drawback

• Revisiting bandwidth-delay product
– Total delay/latency = transmission delay +

propagation delay + queuing
• Queuing is the time packet sent waiting at a router’s

buffer
• Will revisit later (no sweat if you don’t get it now)

Delay * bandwidth product

• For a 1Mbps pipe, it takes 8 seconds to transmit 1MB. If the
link latency is less than 8 seconds, the pipe is full before all
data are pumped into the pipe

• For a 1Gbps pipe, it takes 8 ms to transmit 1MB.

Stop-and-wait drawback

• A 1Mbps link with a 100ms two-way delay (round
trip time, RTT)

• 1KB frame size
• Throughput = 1KB/ (1KB/1Mbps + 100ms) =

74Kbps << 1Mbps
• Delay * bandwidth = 100Kb
• So we could send ~12 frames before the pipe is full!
• Throughput = 100Kb/(1KB/1Mbps + 100ms) =

926Kbps

Sliding window

• Key idea: allowing
multiple outstanding
(unacked) frames to
keep the pipe full

Sliding window on sender
• Assign a sequence number (SeqNum) to each

frame
• Maintains three variables
– Send Window Size (SWS)
– Last Ack Received (LAR)
– Last Frame Sent (LFS)

• Invariant: LFS – LAR ≤ SWS

• Sender actions
– When an ACK arrives, moves LAR to the right,

opening the window to allow the sender to send
more frames

– If a frame times out before an ACK arrives,
retransmit

Slide window this way when an ACK arrives

Sliding window on receiver
• Maintains three window variables
– Receive Window Size (RWS)
– Largest Acceptable Frame (LAF)
– Last frame received (LFR)

• Invariant
– LAF – LFR ≤ RWS

• When a frame with SeqNum arrives
– Discards it if out of window
• Seq ≤ LFR or Seq > LAF

– If in window, decides what to ACK
• Cumulative ack
• Acks SeqNumToAck even if higher-numbered packets have

been received
• Sets LFR = SeqNumToAck-1, LAF = LFR + RWS
• Updates SeqNumToAck

• Ex: LFR = 5; RWS = 4, frames 7, 8, 6 arrives

Finite sequence numbers

• Things may go wrong when SWS=RWS, SWS too
large

• Example
– 3-bit sequence number, SWS=RWS=7
– Sender sends 0, …, 6; receiver acks, expects (7,0, …, 5),

but all acks lost
– Sender retransmits 0,…,6; receiver thinks they are new

• SWS < (MaxSeqNum+1)/2
– Alternates between first half and second half of sequence

number space as stop-and-wait alternates between 0 and 1

Multiple functions of the sliding
window algorithm

• Remark: perhaps one of the best-known
algorithms in computer networking

• Multiple functions
– Reliable deliver frames over a link
– In-order delivery to upper layer protocol
– Flow control
• Not to over un a slow slower

– Congestion control (later)
• Not to congest the network

Other ACK mechanisms
• NACK: negative acks for packets not received
– unnecessary, as sender timeouts would catch this

information

• SACK: selective ACK the received frames
– + No need to send duplicate packets
– - more complicated to implement
– Newer version of TCP has SACK

Concurrent logical channels

• A link has multiple logical channels
• Each channel runs an independent stop-and-

wait protocol
• + keeps the pipe full
• - no relationship among the frames sent in

different channels: out-of-order

Exercise

• Delay: 100ms; Bandwidth: 1Mbps; Packet
Size: 1000 Bytes; Ack: 40 Bytes

• Q: the smallest window size to keep the pipe
full?

• Window size = largest amount of unacked data
• How long does it take to ack a packet?
– RTT = 100 ms * 2 + transmission delay of a packet

(1000B) + transmission delay of an ack (40B)
~=208ms

• How many packets can the sender send in an
RTT?
– 1Mbps * 208ms / 8000 bits = 26

• Roughly 13 packets in the pipe from sender to
receiver, and 13 acks from receiver to sender

100ms

1Mbps

Summary
• CRC

• Reliability
– FEC, sliding window

• Next
–Multi-access link

