CompSci 356: Computer Network Architectures

Lecture 8: Switching technologies Chapter 3.1

Xiaowei Yang

xwy@cs.duke.edu

Review

- Sliding window revisited
- End-to-end arguments
- Reliable transmission
- Multiple access links
- Ethernet: CSMA/CD
- Token ring
- Wireless
- 802.11 (WiFi): RTS/CTS
- Bluetooth
- Cell phone
- Note: understand the concepts

Wireless links

- Most common
- Asymmetric
- Point-to-multipoint

Wireless access control

- Can't use Ethernet protocol
- Hidden terminal
- A and C can' t hear each other's collision at B
- Exposed terminal
- B can send to A; C can send to D

802.11 (WiFi) Multiple access with collision avoidance (CSMA/CA)

- Sender and receiver exchange control
- Sender \rightarrow receiver: Request to send (RTS)
- Specifies the length of frame
- Receiver \rightarrow sender: Clear to send (CTS)
- Echoes length of frame
- Sender \rightarrow receiver: frame
- Receiver \rightarrow sender: ack
- Other nodes can send after hearing ACK
- Node sees CTS
- Too close to receiver, can' transmit
- Addressing hidden terminals
- Node only sees RTS
- Okay to transmit
- Addressing exposed terminals

How to resolve collision

- Sender cannot do collision detection
- Single antenna can't send and receive at the same time
- If no CTS, then RTS collide
- Exponential backoff to retransmit

Distribution system

- Hosts associate with APs
- APs connect via the distribution system
- A layer-2 system
- Ethernet, token ring, etc.
- Host IP addresses do not need to change

AP association

- Active scanning
- Node: Probe
- APs: Probe response
- Node selects one of APs, send Association request
- AP replies Association Response
- Passive scanning
- AP sends Beacon to announce itself
- Node sends Association Request

Frame format

16	16		48	48	48	16	48	$0-18,496$	32
Control	Duration	Addr1	Addr2	Addr3	SeqCtrl	Addr4	Payload	CRC	

- Same AP
- Addr1: dst
- Addr2: src
- Different APs: Need to identify the intermediate APs
- ToDS and FromDS in control field set
- Add1: dst, Addr2: AP_dst
- Addr3: AP_src, Add4: src
- Control
- 6-bit Type
- A pair of 1-bit field: ToDS/FromDS

Bluetooth (802.15.1)

- Connecting devices: mobile phones, headsets, keyboards
- Very short range communication
- Low power
- License exempt band 2.45 Ghz
- $1 \sim 3 \mathrm{Mpbs}$
- Specified by Bluetooth Special Interest Group

A bluetooth piconet

- A master device and up to seven slave devices
- Communication is between the master and a slave

Cell phone technologies

- Using licensed spectrum
- Different bands using different frequencies
- Base stations form a wired network
- Geographic area served by a base station's antenna is called a cell
- Similar to wifi
- Phone is associated with one base station
- Leaving a cell entering a cell causes a handoff

Cellular technologies

- 1G: analog
- 2G: digital and data
- 3G: higher bandwidth and simultaneous voice and data
- 4G: even higher. Top around 2.6 Ghz
- 5G: 15Ghz

List of mobile phone generations		
OG (radio telephones)	MTS - MTA - MTB - MTC - MTD • IMTS • AMTS • OLT • Autoradiopuhelin - B-Netz - Altai • AMR	
1G (1985)	AMPS family	AMPS (TIA/EIA/IS-3, ANSI/TIA/EIA-553) • N-AMPS (TIA/EIA/IS-91) • TACS • ETACS
	Other	NMT • C-450 - Hicap • Mobitex - DataTAC
2G (1992)	GSM/3GPP family	GSM - CSD - HSCSD
	3GPP2 family	cdmaOne (TIA/EIA/IS-95 and ANSI-J-STD 008)
	AMPS family	D-AMPS (IS-54 and IS-136)
	Other	CDPD - iDEN • PDC P PHS
2G transitional (2.5G, 2.75G)	GSM/3GPP family	GPRS • EDGE/EGPRS (UWC-136/136HS/TDMA-EDGE)
	3GPP2 family	CDMA2000 1X (TIA/EIA/IS-2000) - CDMA2000 1X Advanced
	Other	WiDEN • DECT
3G (2003)	3GPP family	UMTS (UTRA-FDD / W-CDMA • UTRA-TDD LCR / TD-SCDMA • UTRA-TDD HCR / TD-CDMA)
	3GPP2 family	CDMA2000 1xEV-DO Release 0 (TIA/IS-856)
3G transitional (3.5G, 3.75G, 3.9G)	3GPP family	HSPA (HSDPA • HSUPA) • HSPA+ • LTE (E-UTRA)
	3GPP2 family	CDMA2000 1xEV-DO Revision A (TIA/EIA/IS-856-A) • EV-DO Revision B (TIA/EIA/IS-856-B) • EV-DO Revision C
	IEEE family	Mobile WiMAX (IEEE 802.16e) • Flash-OFDM • iBurst (IEEE 802.20)
4G (2013) (IMT Advanced)	3GPP family	LTE Advanced (E-UTRA) • LTE Advanced Pro (4.5G Pro/pre-5G/4.9G)
	IEEE family	WiMAX (IEEE 802.16m) (WiMax 2.1 (LTE-TDD))
5G (2020)(IMT-2020)(Under development)	LTE	
	5G-NR	

Today

- Types of switching
- Datagram
- Virtual circuit
- Source routing

Packet switching

- Problem: single link networks have limited scale
- Ethernet < 1024 hosts, 2500 meters
- Wireless limited by radio ranges
- Point-to-point links connect only two nodes
- A packet switch is a device with several inputs and outputs leading to and from the nodes that the switch interconnects
- Hosts communicate without being directly connected

A star topology

- A switch has a limited number of input and output ports
- Switches can be connected to each other to build larger networks
- Adding a new host may not reduce the performance for other hosts
- Not true for shared media networks
- Why?

Switching technologies

- Switching / forwarding: to receive incoming packets on one of its links and to transmit them on some other link.
- Problem: how does a switch decide on which output port to place each packet?
- Solution: looks at the packet header and makes a decision
- Connectionless: datagram
- Connection oriented: virtual circuit
- Source routing

Challenges

- Contention
- Input rate exceeds output rate
- Multiple input ports may send to the same output port
- Switches queue packets until contention disappears
- Congestion
- When a switch runs out of buffer, it discards packets.
- Too frequent packet loss is said to be congested

Datagram

- Every packet contains the destination address
- A global unique identifier
- Ethernet has 48-bit addresses
- A switch maintains a forwarding table that maps a packet to an output port

Switch 2's forwarding table

Q: how does a switch compute the table?

Features of datagram switching

- Connectionless
- Unknown network state
- Independent forwarding
- Robust to failures
- Switches can re-compute forwarding tables

Virtual circuit switching

- Connection oriented
- Set up a virtual circuit
- Data transfer
- Connection setup phase
- Set up connection state
- A virtual circuit identifier, an incoming interface, an outgoing interface, and an outgoing virtual circuit identifier

Virtual circuit table (switch1)

Incoming interface	Incoming VCI	Outgoing interface	Outgoing VCI
2	5	1	11

Virtual circuit switching

- Algorithm:
- If a packet arrives on the matching incoming port with the matching incoming VCI, it will be sent to the corresponding outgoing port with the corresponding VCI
- VCIs are link-local

How to setup connection state

- Administrator configured
- Permanent virtual circuit (PVC)
- Admin manually sets up VC tables
- Does not suit large networks
- Signaling
- A host sends messages to dynamically setup or tear down a VC

VC setup protocol

- A host A sends a setup message to first hop switch, including the final destination address
- Similar to a datagram packet
- The switch picks an unused VCI to identify the incoming connection, and fills part of the VC table
- Why not let the host pick it?
- Every switch repeats the process until the packet reaches the destination B
- The destination B sends an ack to inform its upstream switch the VCI for the connection

- After setup, A sends to B
- A tears down after done

Characteristics of VC switching

- - Connection setup wait
- + Data packets contain a small VCI, not the full destination addresses
- - One switch failure tears down the entire connection
- - Connection sets up require routing algorithms
- Setup packet is forwarded using a datagram algorithm

VC allows resource reservation

- + Buffers can be allocated during the setup phase to avoid congestion
- An example (X.25)
- Buffers allocated during connection setup
- Sliding window is run between pairs of nodes (hop-by-hop flow control)
- Circuit is rejected if no more buffer

Quality of service (QoS)

- Connectionless network is difficult to allocate resources
- Switches send packets independently
- How to associate one packet with other packets?
- Virtual circuit can be used to provide different QoS
- Allocate a fraction of link bandwidth to each circuit

Link layer technologies that use VC

- X. 25
- Frame relay
- Asynchronous Transfer Mode (ATM)

Asynchronous Transfer Mode

- ATM Cells: fixed-size packets
-5 bytes header
- 48 bytes payload
- If payload smaller than $48 B$, uses padding
- If greater than $48 B$, breaks it

Why small, fixed-length packets?

- Cons: maximum efficiency $48 / 53=90.6 \%$
- Pros:
- Suitable for high-speed hardware implementation
- Many switching elements doing the same thing in parallel
- Reducing priority packet latency
- Good for QoS
- Reducing transmission latency

Switching and Forwarding

- ATM
- User-Network Interface (UNI)
- Host-to-switch format
- GFC: Generic Flow Control
- VCI: Virtual Circuit Identifier
- Type: management, congestion control
- CLP: Cell Loss Priority
- HEC: Header Error Check (CRC-8)

| 4 | 8 | 16 | 3 | 1 | 8 | 384 (48 bytes) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GFC | VPI | VCI | Type | CLP | HEC (CRC-8) | Payload |

- Network-Network Interface (NNI)
- Switch-to-switch format
- GFC becomes part of VPI field

Virtual paths

Public network

- 24-bit virtual circuit identifiers (VCIs)
- Two-levels of hierarchy
- 8-bit virtual path, 16-bit VCI
- Virtual paths shared by multiple connections

History of ATM

- Why 48 bytes
- It's from the telephone technology
- Thought data would be mostly voice
- A compromise
- US wanted 64 bytes for efficiency
- Europe wanted 32 bytes for simplifying echo cancellation
- $(64+32) / 2=48$ bytes
- Popular in the late 80s and early 90s due to its high speed
- Major telecoms supported it
- Popularity faded. IP/Ethernet ruled
- IP over ATM
- DSL over ATM: DSL modem takes Ethernet frames and chop them into cells

Switching technologies

- Connectionless: datagram
- Connection oriented: virtual circuit
- An example of VC switching: ATM
- Source routing

- Source host provides all the information for packets to travel across the network
- Packets carry output port numbers
- Packets carry switch addresses
- Variable header length

Handling source routing headers

a. Rotation
b. Stripping

- No return path!
c. Pointer

Loose or strict source routing

- Strict
- Must visit every node on the path
- Loose
- Waypoints rather than the complete route

Summary

- Wireless links
- Types of switching
- Datagram
- Virtual circuit
- Source routing
- Next: Bridges and LAN switches

