CompSci 356: Computer Network Architectures

Lecture 8: Switching technologies
Chapter 3.1

Xiaowei Yang xwy@cs.duke.edu

Review

- Sliding window revisited
- End-to-end arguments
 - Reliable transmission
- Multiple access links
 - Ethernet: CSMA/CD
 - Token ring
 - Wireless
 - 802.11 (WiFi): RTS/CTS
 - Bluetooth
 - Cell phone
 - Note: understand the concepts

Wireless links

- Most common
 - Asymmetric
- Point-to-multipoint

Wireless access control

- Can't use Ethernet protocol
 - Hidden terminal
 - A and C can't hear each other's collision at B
 - Exposed terminal
 - B can send to A; C can send to D

802.11 (WiFi) Multiple access with collision avoidance (CSMA/CA)

- Sender and receiver exchange control
 - Sender → receiver: Request to send (RTS)
 - Specifies the length of frame
 - Receiver → sender: Clear to send (CTS)
 - Echoes length of frame
 - Sender → receiver: frame
 - Receiver → sender: ack
 - Other nodes can send after hearing ACK
- Node sees CTS
 - Too close to receiver, can't transmit
 - Addressing hidden terminals
- Node only sees RTS
 - Okay to transmit
 - Addressing exposed terminals

How to resolve collision

- Sender cannot do collision detection
 - Single antenna can't send and receive at the same time

- If no CTS, then RTS collide
- Exponential backoff to retransmit

Distribution system

- Hosts associate with APs
- APs connect via the distribution system
 - A layer-2 system
 - Ethernet, token ring, etc.
 - Host IP addresses do not need to change

AP association

- Active scanning
 - Node: Probe
 - APs: Probe response
 - Node selects one of APs, send Association request
 - AP replies Association Response
- Passive scanning
 - AP sends Beacon to announce itself
 - Node sends Association Request

Frame format

16		48					0-18,496	
Control	Duration	Addr1	Addr2	Addr3	SeqCtrl	Addr4	Payload	CRC

- Same AP
 - Addr1: dst
 - Addr2: src
- Different APs: Need to identify the intermediate APs
 - ToDS and FromDS in control field set
 - Add1: dst, Addr2: AP_dst
 - Addr3: AP_src, Add4: src
- Control
 - 6-bit Type
 - A pair of 1-bit field: ToDS/FromDS

Bluetooth (802.15.1)

- Connecting devices: mobile phones, headsets, keyboards
 - Very short range communication
 - Low power
- License exempt band 2.45 Ghz
- 1~3Mpbs
- Specified by Bluetooth Special Interest Group

A bluetooth piconet

- A master device and up to seven slave devices
- Communication is between the master and a slave

Cell phone technologies

- Using licensed spectrum
- Different bands using different frequencies
- Base stations form a wired network
- Geographic area served by a base station's antenna is called a cell
 - Similar to wifi
- Phone is associated with one base station
- Leaving a cell entering a cell causes a handoff

Cellular technologies

- 1G: analog
- 2G: digital and data
- 3G: higher bandwidth and simultaneous voice and data
- 4G: even higher. Top around 2.6Ghz
- 5G: 15Ghz

		List of mobile phone generations				
0G (radio telephones)	MTS · MTA - MTB - MTC - MTD · IMTS · AMTS · OLT · Autoradiopuhelin · B-Netz · Altai · AMR					
1G (1985)	AMPS family	AMPS (TIA/EIA/IS-3, ANSI/TIA/EIA-553) · N-AMPS (TIA/EIA/IS-91) · TACS · ETACS				
	Other	NMT · C-450 · Hicap · Mobitex · DataTAC				
	GSM/3GPP family	GSM · CSD · HSCSD				
2G (1992)	3GPP2 family	cdmaOne (TIA/EIA/IS-95 and ANSI-J-STD 008)				
2G (1992)	AMPS family	D-AMPS (IS-54 and IS-136)				
	Other	CDPD · iDEN · PDC · PHS				
	GSM/3GPP family	GPRS · EDGE/EGPRS (UWC-136/136HS/TDMA-EDGE)				
2G transitional (2.5G, 2.75G)	3GPP2 family	CDMA2000 1X (TIA/EIA/IS-2000) · CDMA2000 1X Advanced				
(2100), 21100)	Other	WiDEN · DECT				
3G (2003)	3GPP family	UMTS (UTRA-FDD / W-CDMA · UTRA-TDD LCR / TD-SCDMA · UTRA-TDD HCR / TD-CDMA)				
3G (2003)	3GPP2 family	CDMA2000 1xEV-DO Release 0 (TIA/IS-856)				
	3GPP family	HSPA (HSDPA · HSUPA) · HSPA+ · LTE (E-UTRA)				
3G transitional (3.5G, 3.75G, 3.9G)	3GPP2 family	CDMA2000 1xEV-DO Revision A (TIA/EIA/IS-856-A) • EV-DO Revision B (TIA/EIA/IS-856-B) • EV-DO Revision C				
	IEEE family	Mobile WiMAX (IEEE 802.16e) • Flash-OFDM • iBurst (IEEE 802.20)				
4G (2013)	3GPP family	LTE Advanced (E-UTRA) · LTE Advanced Pro (4.5G Pro/pre-5G/4.9G)				
(IMT Advanced)	IEEE family	WiMAX (IEEE 802.16m) (WiMax 2.1 (LTE-TDD))				
5G (2020)	LTE					
(IMT-2020) (Under development)	5G-NR					

Today

- Types of switching
 - Datagram
 - Virtual circuit
 - Source routing

Packet switching

- Problem: single link networks have limited scale
 - Ethernet < 1024 hosts, 2500 meters
 - Wireless limited by radio ranges
 - Point-to-point links connect only two nodes
- A packet switch is a device with several inputs and outputs leading to and from the nodes that the switch interconnects
 - Hosts communicate without being directly connected

A star topology

- A switch has a limited number of input and output ports
- Switches can be connected to each other to build larger networks
- Adding a new host may not reduce the performance for other hosts
 - Not true for shared media networks
 - Why?

Switching technologies

- Switching / forwarding: to receive incoming packets on one of its links and to transmit them on some other link.
- Problem: how does a switch decide on which output port to place each packet?
- Solution: looks at the packet header and makes a decision
 - Connectionless: datagram
 - Connection oriented: virtual circuit
 - Source routing

Challenges

Contention

- Input rate exceeds output rate
 - Multiple input ports may send to the same output port
- Switches queue packets until contention disappears

Congestion

- When a switch runs out of buffer, it discards packets.
- Too frequent packet loss is said to be congested

Datagram

- Every packet contains the destination address
 - A global unique identifier
 - Ethernet has 48-bit addresses

• A switch maintains a forwarding table that maps a packet to an output port

Switch 2's forwarding table

A	3
В	0
С	3
D	
Е	
F	
G	
Н	

Q: how does a switch compute the table?

Features of datagram switching

- Connectionless
- Unknown network state

- Independent forwarding
- Robust to failures
 - Switches can re-compute forwarding tables

Virtual circuit switching

- Connection oriented
 - Set up a virtual circuit
 - Data transfer

- Connection setup phase
 - Set up connection state
 - A virtual circuit identifier, an incoming interface, an outgoing interface, and an outgoing virtual circuit identifier

Virtual circuit table (switch1)

Incoming	Incoming	Outgoing	Outgoing
interface	VCI	interface	VCI
2	5	1	11

Virtual circuit switching

Algorithm:

- If a packet arrives on the matching incoming port with the matching incoming VCI, it will be sent to the corresponding outgoing port with the corresponding VCI
- VCIs are link-local

How to setup connection state

- Administrator configured
 - Permanent virtual circuit (PVC)
 - Admin manually sets up VC tables
 - Does not suit large networks

- Signaling
 - A host sends messages to dynamically setup or tear down a VC

VC setup protocol

- A host A sends a setup message to first hop switch, including the final destination address
 - Similar to a datagram packet
- The switch picks an unused VCI to identify the incoming connection, and fills part of the VC table
 - Why not let the host pick it?
- Every switch repeats the process until the packet reaches the destination B
- The destination B sends an ack to inform its upstream switch the VCI for the connection

- After setup, A sends to B
- A tears down after done

Characteristics of VC switching

- - Connection setup wait
- + Data packets contain a small VCI, not the full destination addresses
- - One switch failure tears down the entire connection
- - Connection sets up require routing algorithms
 - Setup packet is forwarded using a datagram algorithm

VC allows resource reservation

- + Buffers can be allocated during the setup phase to avoid congestion
- An example (X.25)
 - Buffers allocated during connection setup
 - Sliding window is run between pairs of nodes (hop-by-hop flow control)
 - Circuit is rejected if no more buffer

Quality of service (QoS)

- Connectionless network is difficult to allocate resources
 - Switches send packets independently
 - How to associate one packet with other packets?
- Virtual circuit can be used to provide different QoS
 - Allocate a fraction of link bandwidth to each circuit

Link layer technologies that use VC

- X.25
- Frame relay
- Asynchronous Transfer Mode (ATM)

Asynchronous Transfer Mode

- ATM Cells: fixed-size packets
 - 5 bytes header
 - 48 bytes payload
- If payload smaller than 48B, uses padding
- If greater than 48B, breaks it

Why small, fixed-length packets?

• Cons: maximum efficiency 48/53=90.6%

• Pros:

- Suitable for high-speed hardware implementation
- Many switching elements doing the same thing in parallel
- Reducing priority packet latency
 - Good for QoS
- Reducing transmission latency

Switching and Forwarding

ATM

- User-Network Interface (UNI)
 - Host-to-switch format
 - GFC: Generic Flow Control
 - VCI: Virtual Circuit Identifier
 - Type: management, congestion control
 - CLP: Cell Loss Priority
 - HEC: Header Error Check (CRC-8)

- Network-Network Interface (NNI)
 - Switch-to-switch format
 - GFC becomes part of VPI field

Virtual paths

- 24-bit virtual circuit identifiers (VCIs)
- Two-levels of hierarchy
 - 8-bit virtual path, 16-bit VCI
 - Virtual paths shared by multiple connections

History of ATM

- Why 48 bytes
 - It's from the telephone technology
 - Thought data would be mostly voice
 - A compromise
 - US wanted 64 bytes for efficiency
 - Europe wanted 32 bytes for simplifying echo cancellation
 - (64+32)/2 = 48 bytes
 - Popular in the late 80s and early 90s due to its high speed
 - Major telecoms supported it
 - Popularity faded. IP/Ethernet ruled
 - IP over ATM
 - DSL over ATM: DSL modem takes Ethernet frames and chop them into cells

Switching technologies

• Connectionless: datagram

- Connection oriented: virtual circuit
 - An example of VC switching: ATM

Source routing

Source routing

- Source host provides all the information for packets to travel across the network
 - Packets carry output port numbers
 - Packets carry switch addresses
 - Variable header length

Handling source routing headers

- a. Rotation
- b. Stripping
 - No return path!
- c. Pointer

Loose or strict source routing

- Strict
 - Must visit every node on the path

- Loose
 - Waypoints rather than the complete route

Summary

Wireless links

- Types of switching
 - Datagram
 - Virtual circuit
 - Source routing

Next: Bridges and LAN switches