CompSci 356: Computer Network Architectures

Lecture 9: Ethernet Switches [PD] Ch 3.1.4

Xiaowei Yang
xwy@cs.duke.edu

Review

- Past lectures
- Single link networks
- Point-to-point, shared media
- Ethernet, token ring, wireless networks
- Encoding, framing, error detection, reliability
- Delay-bandwidth product, sliding window, exponential backoff, carrier sense collision detection, hidden/exposed terminals
- Packet switching: how to connect multiple links
- Connectionless: Datagram
- Connection-oriented: Virtual circuits
- Source routing
- Pros and cons

Today

- Ethernet switches
- Forwarding
- Address learning
- Spanning Tree Algorithm
- Virtual LAN

Ethernet Learning Bridges

- Local Area Network (LAN) switches
- Bridges
- Overall design goal: complete transparency
- "Plug-and-play"
- Self-configuring without hardware or software changes
- Bridges should not impact operations of existing LANs

Three main functions

- (1) Forwarding of Ethernet Frames
- (2) Learning of Addresses
- (3) Spanning Tree Algorithm

(1) Frame Forwarding

- Assume a MAC frame arrives

(2) Address Learning

- When a bridge reboots, its forwarding table is empty
- Forwarding table entries are learned automatically with a simple heuristic:

The source field of a frame that arrives on a port tells which hosts are reachable from this port.

Port 1
x is at Port 3 y is at Port 4
Src=x, Dest=y
Port 2

Src=x, Dest=y
Port 3

Danger of Loops

- Consider the two LANs that are connected by two bridges.
- Assume host A is transmitting a frame F with a broadcast address

What is happening?

- Bridges A and B flood the frame to LAN 2.
- Bridge B sees F on LAN 2, and updates the port mapping of MAC_A, and copies the frame back to LAN 1
- Bridge A does the same.
- The copying continues

Where' s the problem? What's the solution?

(3) Spanning Tree Algorithm

- A solution is the spanning tree algorithm that prevents loops in the topology
- By Radia Perlman at DEC

Algorhyme (the spanning tree poem)

- I think that I shall never see

A graph more lovely than a tree.
A tree whose crucial property
Is loop-free connectivity.
A tree that must be sure to span
So packets can reach every LAN.
First, the root must be selected.
By ID, it is elected.
Least-cost paths from root are traced.
In the tree, these paths are placed.
A mesh is made by folks like me,
Then bridges find a spanning tree.

- —Radia Perlman

Graph theory on spanning tree

- For any connected graph consisting of nodes and edges connecting pairs of nodes, a spanning tree of edges maintains the connectivity of the graph but contains no loops
- n-node' s graph, n-1 edges on a spanning tree
- No redundancy

Protocols vs Algorithms

- Protocols are a set of rules that define message formats and actions to be taken when messages are sent or received
- Underlying a network protocol there is often a distributed algorithm
- Protocols must consider practical constraints, e.g.
- Limited size of a field
- Non-synchronized clocks

The protocol

- IEEE 802.1d has an algorithm that organizes the bridges as spanning tree in a dynamic environment
- Bridges exchange messages to configure the bridge (Configuration Bridge Protocol Data Unit, Configuration BPDUs) to build the tree
- Select ports they use to forward packets

Configuration BPDUs

What do the BPDUs do?

- Elect a single bridge as the root bridge
- Calculate the distance of the shortest path to the root bridge
- Each bridge can determine a root port, the port that gives the best path to the root
- Each LAN can determine a designated bridge, which is the bridge closest to the root. A LAN's designated bridge is the only bridge allowed to forward frames to and from the LAN for which it is the designated bridge.
- A LAN's designated port is the port that connects it to the designated bridge
- Select ports to be included in the spanning tree.

Terms

- Each bridge has a unique identifier: Bridge ID Bridge ID = \{Priority : 2 bytes; Bridge MAC address: 6 bytes \}
- Priority is configured
- Bridge MAC address is the lowest MAC addresses of all ports
- Each port within a bridge has a unique identifier (port ID)
- Root Bridge: The bridge with the lowest identifier is the root of the spanning tree
- Root Port: Each bridge has a root port which identifies the next hop from a bridge to the root

Terms

- Root Path Cost: For each bridge, the cost of the min-cost path to the root
- Assume it is measured in \#hops to the root
- Designated Bridge, Designated Port: Single bridge on a LAN that is closest to the root for this LAN:
- If two bridges have the same cost, select the one with the highest priority; if they have the same priority, select based on the bridge ID
- If the min-cost bridge has two or more ports on the LAN, select the port with the lowest identifier

Spanning Tree Algorithm

- Each bridge is sending out BPDUs that contain the following information:
root bridge (what the sender thinks it is) root path cost for sending bridge Identifies sending bridge Identifies the sending port

- The transmission of BPDUs results in the distributed computation of a spanning tree
- The convergence of the algorithm is very fast

Ordering of Messages

- We define an ordering of BPDU messages (lexicographically)

M1

\section*{| ID R2 | C2 | ID B2 | ID P2 |
| :--- | :--- | :--- | :--- |}

M2

We say M1 advertises a better path than M2 ("M1<M2") if
($\mathrm{R} 1<\mathrm{R} 2$),
Or (R1 == R2) and ($\mathrm{C} 1<\mathrm{C} 2$),
$\operatorname{Or}(\mathrm{R} 1==\mathrm{R} 2)$ and $(\mathrm{C} 1==\mathrm{C} 2)$ and $(\mathrm{B} 1<\mathrm{B} 2)$,
Or (R1 == R2) and (C1 == C2) and (B1 == B2) and ($\mathrm{P} 1<\mathrm{P} 2$)

Initializing the Spanning Tree Protocol

- Initially, all bridges assume they are the root bridge.
- Each bridge B sends BPDUs of this form on its LANs from each port P :
- Each bridge looks at the BPDUs received on all its ports and its own transmitted BPDUs.
- Root bridge is the one with the smallest received root ID that has been received so far
- whenever a smaller ID arrives, the root is updated

Spanning Tree Protocol

- Each bridge B looks on all its ports for BPDUs that are better than its own BPDUs
- Suppose a bridge with BPDU:

receives a "better" BPDU:

M2

Then it will update the BPDU to:

- However, the new BPDU is not necessarily sent out
- On each bridge, the port where the "best BPDU" (via relation " $<$ ") was received is the root port of the bridge
- No need to send out updated BPDUs to root port

When to send a BPDU

- Say, B has generated a BPDU for each port x

R	Cost	B	x

- B will send this BPDU on port x only if its BPDU is better (via relation "<") than any BPDU that B received from port x .
- In this case, B also assumes that it is the designated bridge for the LAN to which the port connects

- And port x is the designated port of that LAN

Selecting the Ports for the Spanning Tree

- Each bridge makes a local decision which of its ports are part of the spanning tree
- Now B can decide which ports are in the spanning tree:
- B's root port is part of the spanning tree
- All designated ports are part of the spanning tree
- All other ports are not part of the spanning tree
- B's ports that are in the spanning tree will forward packets (=forwarding state)
- B' s ports that are not in the spanning tree will not forward packets (=blocking state)

Building the Spanning Tree

- Consider the network on the right.
- Assume that the bridges have calculated the designated ports (D) and the root ports (R) as indicated.
- What is the spanning tree?
- On each LAN, connect D ports to the R ports on this LAN
- Which bridge is the root bridge?
- Suppose a packet is originated in LAN 5. How is the packet flooded?

Example

- Assume that all bridges send out their BPDU's once per second, and assume that all bridges send their BPDUs at the same time
- Bridge $1<$ Bridge 2 Bridge3 $<$ Bridge $4<$ Bridge5
- Assume that all bridges are turned on simultaneously at time

Example: BPDUs sent

	Bridge1	Bridge2	Bridge3	Bridge4	Bridge5
$\mathrm{T}=1$ sec					

Example: BPDUs sent

	Bridge1	Bridge2	Bridge3	Bridge4	Bridge5
$\mathrm{T}=2 \mathrm{sec}$					

Example: BPDUs sent

	Bridge1	Bridge2	Bridge3	Bridge4	Bridge5
$\mathrm{T}=3 \mathrm{sec}$					

Example: BPDUs sent

	Bridgel	Bridge2	Bridge3	Bridge4	Bridge5
$\mathrm{T}=1 \mathrm{sec}$	Send: A: (B1,0,B1,A) B: (B1,0,B1,B) Recv: A: (B5,0,B5,A) (B2,0,B2,B) B: (B3,0,B3,B) (B4,0,B4,A)	Send: A: (B2,0,B2,A) B: (B2,0,B2,B) Recv: A: B: (B1,0,B1,A) (B5,0,B5,A)	$\begin{array}{\|l} \hline \text { Send: } \\ \text { A:(B3,0,B3,A) } \\ \text { B:(B3,0,B3,B) } \\ \text { Recv: } \\ \text { A: (B5,0,B5,B) } \\ \text { (B4,0,B4,B) } \\ \text { B: (B1,0,B1,B) } \\ \text { (B4,0,B4,A) } \end{array}$	Send: A:(B4,0,B4,A) B:(B4,0,B4,B) Recv: A: (B3,0,B3,B) (B1,0,B1,B) B: (B3,0,B3,A) (B5,0,B5,B)	Send: A:(B5,0,B5,A) B:(B5,0,B5,B) Recv: A: (B2,0,B2,B) (B1,0,B1,A) B: (B3,0,B3,A) (B4,0,B4,B)

Example: BPDU' s sent

	Bridgel	Bridge2	Bridge3	Bridge4	Bridge5
$\mathrm{T}=2 \mathrm{sec}$	D-port: A,B Send: A: (B1,0,B1,A) B: (B1,0,B1,B) Recv:	R-port: B D-port: A Send: A: (B1,1,B2,A) Recv: A: B: (B1,0,B1,A)	R-port: B D-port: A Send: A: (B1,1,B3,A) Recv: A: (B1,1,B4,B) (B1,1,B5,B) B: (B1,0,B1,B)	R-port: A D-port: B Send: B: (B1,1,B4,B) Recv: A: (B1,0,B1,B) B: (B1,1,B3,A) (B1,1,B5,B)	R-port: A D-port: B Send: B: (B1,1,B5,B) Recv: A: (B1,0,B1,A) B: (B1,1,B3,A) (B1,1,B4,B)

Example: BPDU' s sent

	Bridge 1	Bridge 2	Bridge 3	Bridge4	Bridge 5
$\mathrm{T}=3 \mathrm{sec}$	D-port: A,B Send: A: (B1,0,B1,A) B: (B1,0,B1,B) Recv:	R-port: B D-port: A Send: A: (B1,1,B2,A) Recv: A: B: (B1,0,B1,A)	R-port: B D-port: A Send: A: (B1,1,B3,A) Recv: A: B: (B1,0,B1,B)	R-port: A Blocked: B Recv: A: (B1,0,B1,B) B: (B1,1,B3,A)	R-port: A Blocked: B Recv: A: (B1,0,B1,A) B: (B1,1,B3,A)

Example: the spanning tree

	Bridge1	Bridge2	Bridge3	Bridge4	Bridge5
Rooot Port					
Dosigacd bidese					
Doseseded pors					

Example: the spanning tree

	Bridge1	Bridge2	Bridge3	Bridge4	Bridge5
Root Port		B	B	A	A
Deijgated bidige	LAN2,3	LAN1	LAN4		
Deiegnated pors	A,B	A	A		

Limitations of bridges

- Scalability
- Broadcast packets reach every host!
- Security
- Every host can snoop
- Non-heterogeneity
- Can' t connect ATM networks

Virtual LANs

- To address the scalability and security issues
- A bridge' s port is configured to have a VLAN ID
- Each VLAN has a spanning tree
- A VLAN header is inserted to a packet
- Packets are flooded to ports with the same VLAN ID

Summary

- LAN switches
- Forwarding
- Address learning
- Spanning Tree Algorithm
- Virtual LAN
- Next:
- Internetworking: how to connect LANs of different types together

