CS 356: Computer Network Architectures

Lecture 11: IP Fragmentation, ARP, and ICMP

Xiaowei Yang xwy@cs.duke.edu

Overview

- Wrapping up from last leture
- IP fragmentation
- ARP
- ICMP

The longest prefix matching algorithm

- 1. Search for a match on all 32 bits
- 2. Search for a match for 31 bits

.

32. Search for a match on 0 bits

Host route, loopback entry

→ 32-bit prefix match

Default route is represented as 0.0.0.0/0

→ 0-bit prefix match

Why longest prefix match?

- Longest → smallest network
- Network prefixes may be aggregated

Example

128.143.71.21

Destination addre	ssNext hop
10.0.0.0/8	eth0
128.143.0.0/16	R2
128.143.64.0/20	R3
128.143.192.0/20	R3
128.143.71.0/24	R4
128.143.71.55/32	R3
0.0.0.0/0 (default)	R5

The longest prefix match for 128.143.71.21 is for 24 bits with entry 128.143.71.0/24

Datagram will be sent to R4

Example: address allocation

- Duke network operators receive a /16 address prefix 152.3.0.0/16 from ARIN
- Allocate address prefixes to three departmental networks
 - ME must have at least 50 hosts
 - ECE and CS must have at least 100 hosts
- Smallest address prefix to each department?

Fragmentation and Reassembly

(not required for Lab 2)

Different networks have different Maximum Transmission Units (MTUs)

Packets may traverse different types of links

IP Fragmentation and Reassembly

- What if the size of an IP datagram exceeds the MTU? IP datagram is fragmented into smaller units.
- What if the route contains networks with different MTUs?

MTUs: FDDI: 4352 Ethernet: 1500

• Fragmentation:

• IP router splits the datagram into several datagrams

Design question: Where is Fragmentation/reassembly done?

- In IPv4, Fragmentation can be done at the sender or at intermediate routers
- The same datagram can be fragmented several times.
- Reassembly of original datagram is only done at destination hosts!! (why?)

What's involved in Fragmentation?

• The following fields in the IP header are involved:

version	header length	DS	ECN	total length (in bytes)		
	Identification			0 D M F F	Frag	ment offset
time-to-l	time-to-live (TTL) protocol			header checksum		hecksum

Identification

- When a datagram is fragmented, the identification is the same in all fragments
- Used to reassemble the original packet

Flags

- DF bit is set: datagram cannot be fragmented and must be discarded if MTU is too small
 - ICMP sent
- MF bit:
 - 1: this is not the last fragment
 - 0: last fragment

What's involved in Fragmentation?

• The following fields in the IP header are involved:

version	header length	DS	ECN	total length (in bytes)		
Identification			0 D M F F	Fragment offset (13-bit)		
time-to-live (TTL) protocol		header checksum				

•Fragment offset

- Offset of the payload of the current fragment in the original datagram in units of 8 bytes
 - Why?
 - Because the field is only 13 bits long, while the total length is 16 bits.
- Total length
 - Total length of the current fragment

Example of Fragmentation

• A datagram with size 2400 bytes must be fragmented according to an MTU limit of 1000 bytes

Determining the length of fragments

- Maximum payload length = 1000 20 = 980 bytes
- Offset specifies the bytes in multiple of 8 bytes. So the payload must be a multiple of 8 bytes.
- 980 980 % 8 = 976 (the largest number that is less than 980 and divisible by 8)
- The payload for the first fragment is 976 and has bytes $0 \sim 975$ of the original IP datagram. The offset is 0.
- The payload for the second fragment is 976 and has bytes $976 \sim 1951$ of the original IP datagram. The offset is 976 / 8 = 122.
- The pay load of the last fragment is 2400 976 * 2 = 428 bytes and has bytes $1952 \sim 2400$ of the original IP datagram. The offset is 244.
- Total length of three fragments: 996 + 996 + 448 = 2440 > 2400
 - Why?
 - Two additional IP headers.

Path MTU discovery

- Fragmentation slows down the router
- \rightarrow should be done by end hosts
- How does a sender know the MTU of a path?
 - A host only knows the MTU of its links
- Solution
 - Sends large packets with DF set
 - If receives ICMP Fragmentation needed messages, reduces maximum segment size

Overview

- IP fragmentation
- ARP
- ICMP

Longest prefix match

Longest Prefix Match: Search for the forwarding table entry that has the longest match with the prefix of the destination IP address

- 1. Search for a match on all 32 bits
- 2. Search for a match for 31 bits

.

32. Search for a match on 0 bits

Host route, loopback entry

→ 32-bit prefix match

Default route is represented as 0.0.0.0/0

→ 0-bit prefix match

Destination addre	ssNext hop
10.0.0.0/8	eth0
128.143.0.0/16	R2
128.143.64.0/20	R3
128.143.192.0/20	R3
128.143.71.0/24	R4
128.143.71.55/32	R3
0.0.0.0/0 (default)	R5

The longest prefix match for 128.143.71.21 is for 24 bits with entry 128.143.71.0/24

Datagram will be sent to R4

How to find out a host's Ethernet address after knowing its IP address?

→ Address Resolution Protocol

ARP and RARP

- The Internet is based on IP addresses
- Data link protocols (Ethernet, FDDI, ATM) may have different (MAC) addresses
- The ARP and RARP protocols perform the translation between IP addresses and MAC layer addresses
- We will discuss ARP for broadcast LANs, particularly Ethernet LANs
 - RFC 826
- RARP obsolete

Address Translation with ARP

ARP Request:

Argon broadcasts an ARP request to all stations on the network: "What is the hardware address of 128.143.137.1?"

Address Translation with ARP

ARP Reply:

Router 137 responds with an ARP Reply which contains the hardware address

ARP Packet Format

⋖ —Ethe	ernet II header—					
Destination address	Source address	Type 0x8060	ARP Request or ARP Reply			CRC
6	6	2	28			4
	Hardware type (2 bytes)			Protocol type (2 bytes)		
	e address (1 byte)	F	rotocol address length (1 byte) Operation code (2 byte			
Source hardware address*						
Source protocol address*						
Target hardware address*						
Target protocol address*						

^{*} Note: The length of the address fields is determined by the corresponding address length fields

^{*} Note: The length of the address fields is determined by the corresponding address length fields

• Hardware type: ether (1)

^{*} Note: The length of the address fields is determined by the corresponding address length fields

Prototype: taken from the set ether_type

- IP: 0x0800

^{*} Note: The length of the address fields is determined by the corresponding address length fields

- Hardware address length
 - Length of an Ethernet address

^{*} Note: The length of the address fields is determined by the corresponding address length fields

- Protocol address length
 - Length of an IP address

^{*} Note: The length of the address fields is determined by the corresponding address length fields

- Opcode
 - ARP request: 1
 - ARP reply: 2

^{*} Note: The length of the address fields is determined by the corresponding address length fields

- Source hardware address
 - Sender's Ethernet address

^{*} Note: The length of the address fields is determined by the corresponding address length fields

- Source protocol address
 - Sender's protocol (IP) address

^{*} Note: The length of the address fields is determined by the corresponding address length fields

- Target hardware address
 - Request: empty
 - Reply: the target's Ethernet address

^{*} Note: The length of the address fields is determined by the corresponding address length fields

- Target protocol address
 - Request: target IP address
 - Reply: destination IP address

Example

Argon 128.143.137.144

00:a0:24:71:e4:44

Router137 128.143.137.1 00:e0:f9:23:a8:20

- ARP Request from Argon is broadcasted:
 - Source addr in Ethernet header: 00:a0:24:71:e4:44
 - Destination addr in Ethernet header: FF:FF:FF:FF:FF
- Source hardware address: 00:a0:24:71:e4:44
- Source protocol address: 128.143.137.144
- Target hardware address: 00:00:00:00:00:00
- Target protocol address: 128.143.137.1

Argon 128.143.137.144 00:a0:24:71:e4:44 Router137 128.143.137.1 00:e0:f9:23:a8:20

- *ARP Reply from Router137 is unicasted:*
 - Source addr: 00:e0:f9:23:a8:20
 - Dst addr: 00:a0:24:71:e4:44
- Source hardware address: 00:e0:f9:23:a8:20
- Source protocol address: 128.143.137.1
- Target hardware address: 00:a0:24:71:e4:44
- Target protocol address: 128.143.137.144

Comments

- ARP requests: broadcast
 - Other hosts learn the source IP/MAC mapping

• ARP replies: unicast

ARP Cache

• Since sending an ARP request/reply for each IP datagram is inefficient, hosts maintain a cache (ARP Cache) of current entries. The entries expire after a time interval.

• Linux: arp -a

Contents of the ARP Cache:

(128.143.71.37) at 00:10:4B:C5:D1:15 [ether] on eth0 (128.143.71.36) at 00:B0:D0:E1:17:D5 [ether] on eth0 (128.143.71.35) at 00:B0:D0:DE:70:E6 [ether] on eth0 (128.143.136.90) at 00:05:3C:06:27:35 [ether] on eth1 (128.143.71.34) at 00:B0:D0:E1:17:DB [ether] on eth0 (128.143.71.33) at 00:B0:D0:E1:17:DF [ether] on eth0

Putting it together

IP Forwarding Implementation

IP Forwarding Logistics (Lab 2)

1. Sanity-check

Meets minimum length and has correct checksum

2. Update header

• Decrement the TTL by 1, and compute the packet checksum over the modified header.

3. Next hop IP lookup

• Find out which entry in the routing table has the longest prefix match with the destination IP address.

4. Next hop MAC lookup

• Check the ARP cache for the next-hop MAC address corresponding to the next-hop IP. If it's there, send it. Otherwise, send an ARP request for the next-hop IP (if one hasn't been sent within the last second), and add the packet to the queue of packets waiting on this ARP request.

5. Error reporting

Error reporting

- Internet Control Message Protocol (ICMP)
 - Ill-formatted packets
 - -TTL == 0
 - ARP receives no reply
 - No protocol or application running at the destination
 - No routing table match

— ...

Location in the protocol stack

- The IP (Internet Protocol) relies on several other protocols to perform necessary control and routing functions:
 - Control functions (ICMP)
 - Multicast signaling (IGMP)
 - Setting up forwarding tables (RIP, OSPF, BGP, PIM, ...)

Overview

- The Internet Control Message Protocol (ICMP) is a helper protocol that supports IP with facility for
 - Error reporting
 - Simple queries
 - ICMP messages are encapsulated as IP datagrams

ICMP message format

4 byte header:

- Type (1 byte): type of ICMP message
- Code (1 byte): subtype of ICMP message
- Checksum (2 bytes): similar to IP header checksum. Checksum is calculated over the entire ICMP message

If there is no additional data, there are 4 bytes set to zero.

→ each ICMP message is at least 8 bytes long

ICMP Query message

ICMP query:

- Request sent by host to a router or host
- Reply sent back to querying host

Example of ICMP Queries

The ping command uses Echo Request/ Echo Reply

Type/	'Cod	e:	D	escri	ption
	000	-			9 01 0 11

8/0 Echo Request 0/0 Echo Reply

Timestamp Request

14/0 Timestamp Reply

Extension (RFC 1256):

13/0

10/0 Router Solicitation

9/0 Router Advertisement

ICMP Error message

- ICMP error messages report error conditions
- Typically sent when a datagram is discarded
- Error message is often passed from ICMP to the application program

ICMP Error message

• ICMP error messages include the complete IP header and the first 8 bytes of the payload (typically: UDP, TCP)

Example: ICMP Port Unreachable

• RFC 792: If, in the destination host, the IP module cannot deliver the datagram because the indicated protocol module or process port is not active, the destination host may send a destination unreachable message to the source host.

Common ICMP Error messages

Type	Code	Description	
3	0–5		Notification that an IP datagram could not be forwarded and was dropped. The code field contains an explanation. (traceroute)

Some subtypes of the "Destination Unreachable"

Code	Description	Reason for Sending
0	Network Unreachable	No routing table entry is available for the destination network.

Summary

- IP fragmentation
- ARP
- ICMP