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Today

• ICMP applications
• Dynamic Routing
– Routing Information Protocol



ICMP applications

• Ping
– ping www.duke.edu

• Traceroute
– traceroute nytimes.com

• MTU discovery
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Ping:  Echo Request and Reply

• Ping�s are handled directly by the kernel
• Each Ping is translated into an ICMP Echo Request
• The Ping�ed host responds with an ICMP Echo Reply

Host
or 

Router

ICMP ECHO REQUEST
Host 
or 

router 

ICMP
 ECH

O RE
PLY

Type
(= 8 or 0)

Code
(=0) Checksum

32-bit sender timestamp

identifier sequence number

Optional data



Traceroute
• xwy@linux20$ traceroute  -n 18.26.0.1
– traceroute to 18.26.0.1 (18.26.0.1), 30 hops max, 60 byte 

packets
– 1  152.3.141.250  4.968 ms  4.990 ms  5.058 ms
– 2  152.3.234.195  1.479 ms  1.549 ms  1.615 ms
– 3  152.3.234.196  1.157 ms  1.171 ms  1.238 ms
– 4  128.109.70.13  1.905 ms  1.885 ms  1.943 ms
– 5  128.109.70.138  4.011 ms  3.993 ms  4.045 ms
– 6  128.109.70.102  10.551 ms  10.118 ms  10.079 ms
– 7  18.3.3.1  28.715 ms  28.691 ms  28.619 ms
– 8  18.168.0.23  27.945 ms  28.028 ms  28.080 ms
– 9  18.4.7.65  28.037 ms  27.969 ms  27.966 ms
– 10  128.30.0.246  27.941 ms * *



Traceroute algorithm
• Sends out three UDP packets with 

TTL=1,2,…,n, destined to a high port

• Routers on the path send ICMP Time exceeded 
message with their IP addresses until n reaches 
the destination distance

• Destination replies with port unreachable 
ICMP messages



Path MTU discovery algorithm

• Send packets with DF bit set

• If receive an ICMP error message, reduce the 
packet size



Today

• ICMP applications
• Dynamic Routing
– Routing Information Protocol



Dynamic Routing
• There are two parts related to  IP packet 

handling:
1. Forwarding 
2. Routing: distributed computation



Static versus Dynamic routing

• Two approaches:
– Static Routing (Lab 2)
– Dynamic Routing

• Routes are calculated by a routing protocol
• Graph algorithms

– Why do we need a distributed protocol to setup routing 
tables?



Static routing
• Setting up host routing tables

– Route add

• xwy@linux20$ netstat -nr
• Kernel IP routing table

Destination           Gateway         Genmask Flags   MSS Window  irtt Iface
152.3.140.0     0.0.0.0         255.255.254.0   U         0 0          0 eth0
0.0.0.0         152.3.140.61    0.0.0.0         UG        0 0          0 eth0

• If a destination has the same network number as the host, send 
directly to the destination; otherwise, send to default router



Protocols versus algorithms
• Routing protocols establish forwarding tables at routers

• A routing protocol specifies
– What messages are sent
– When are they sent
– How are they handled

• At the heart of any routing protocol is a distributed 
algorithm that determines the path from a source to a 
destination



What distributed routing algorithms common 
routing protocols use

Routing information protocol (RIP) Distance vector

Interior Gateway routing protocol 
(IGRP, cisco proprietary)

Distance vector

Open shortest path first (OSPF) Link state
Intermediate System-to-Intermediate 
System (IS-IS)

Link state

Border gateway protocol (BGP) Path vector

Routing protocol Distributed algorithm



Intra-domain routing versus inter-
domain routing

• The Internet is a network of networks
• Administrative autonomy
– internet = network of networks
– each network admin may want to control routing in its 

own network

• Scale: with 200 million destinations:
– can�t store all destinations in routing tables!
– routing table exchange would swamp links
– Solution: using hierarchy to scale



Autonomous systems

• Aggregate routers into regions, �autonomous systems�
(AS) or domain

• Routers in the same AS run the same routing protocol
– �intra-AS� or intra-domain routing protocol
– routers in different AS can run different intra-AS routing 

protocol

Ethernet

Router

Ethernet

Ethernet

RouterRouter

Ethernet

Ethernet

EthernetRouterRouter

Router

Autonomous
System 2

Autonomous
System 1



Autonomous Systems
• An autonomous system is a region of the Internet that is 

administered by a single entity

• Examples of autonomous regions are:
• Duke�s campus network
• at&t�s backbone network
• Regional Internet Service Provider (NC regional)

• intradomain routing
• interdomain routing

• RIP, OSPF, IGRP, and IS-IS are intra-domain routing protocols

• BGP is the only inter-domain routing protocol



RIP and OSPF computes shortest 
paths

• Shortest path routing algorithms
• Goal: Given a network where each link is assigned a cost. 

Find the path with the least cost between two nodes
• Shortest path routing is provably loop-free

– Why?
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Distance vector algorithm
• A decentralized algorithm
– Each node has a partial view

• Neighbors 
• Link costs to neighbors

• Distance vector

• Path computation is iterative and mutually dependent
1. A router sends its known distances to each destination 

(distance vector) to its neighbors
2. A router updates the distance to a destination from all its 

neighbors’ distance vectors
3. A router sends its updated distance vector to its neighbors
4. The process repeats until all routers� distance vectors do 

not change (this condition is called convergence).



A router updates its distance vectors 
using bellman-ford equation

Bellman-Ford Equation
Define
dx(y) := cost of  the least-cost path from x to y

Then
• dx(y) = minv{c(x,v) + dv(y) }, where min is 

taken over all neighbors of node x



Distance vector algorithm: 
initialization

• Let Dx(y) be the estimate of least cost from x to y

• Initialization:
– Each node x knows the cost to each neighbor: c(x,v). For 

each neighbor v of x, Dx(v) = c(x,v)
– Dx(y) to other nodes are initialized as infinity

• Each node x maintains a distance vector (DV): 
– Dx = [Dx(y): y ∈ N ]



Distance vector algorithm: updates

• Each node x sends its distance vector to its 
neighbors, either periodically, or triggered by a 
change in its DV

• When a node x receives a new DV estimate from a 
neighbor v, it updates its own DV using the B-F 
equation:
– If c(x,v) + Dv(y) < Dx(y) then

• Dx(y) = c(x,v) + Dv(y)
• Sets the next hop to reach the destination y to the neighbor v
• Notify neighbors of the change

• The estimate Dx(y) will converge to  the actual least 
cost dx(y)



Distance vector algorithm: an example

• t = 0
• a = ((a, 0), (b, 3), (c, 6))
• b = ((a, 3), (b, 0), (c,1))
• c = ((a, 6), (b, 1), (c, 0) (d, 2))
• d = ((c, 2), (d, 0))
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• t = 1
• a = ((a, 0), (b, 3), (c, 4), (d, 8))
• b = ((a, 3), (b, 0), (c,1), (d, 3))
• c = ((a, 4), (b, 1), (c, 0), (d, 2))
• d = ((a, 8), (b, 3), (c, 2), (d,0))

• t = 2
• a = ((a, 0), (b, 3), (c, 4), (d, 6))
• b = ((a, 3), (b, 0), (c,1), (d, 3))
• c = ((a, 4), (b, 1), (c, 0), (d, 2))
• d = ((a, 6), (b, 3), (c, 2), (d,0))



Mapping an abstract graph to the physical 
network

• Nodes (e.g., v, w, n) are routers, identified by IP addresses, e.g. 10.0.0.1
• Nodes are connected by either a directed link or a broadcast link (Ethernet)
• Destinations are IP networks, represented by the network prefixes, e.g., 

10.0.0.0/16
– Net(v,n) is the network directly connected to router v and n.

• Costs (e.g. c(v,n)) are associated with network interfaces.
– Router1(config)# router rip
– Router1(config-router)# offset-list 0 out 10 Ethernet0/0
– Router1(config-router)# offset-list 0 out 10 Ethernet0/1

n

v
w

Net

 Net(v,w)

Net(v,n)

c(v,w)

c(v,n)



Distance vector routing protocol: 
Routing Table

Dest

n

v
w

D(v,Net)n

costvia
(next hop)

Net

RoutingTable of node v

Net

 Net(v,w)
c(v,w)

Net(v,n)
c(v,n)

Net(v,w): Network address of the network  between v 
and w  

c(v,w): cost to transmit on the 
interface to network Net(v,w)

D(v,net) is v�s 
cost to Net



Distance vector routing protocol: 
Messages
Dest

D(v,Net)n

costvia
(next hop)

Net

RoutingTable of node v

• Nodes send messages to their neighbors which contain 
distance vectors
• A message has the format: [Net , D(v,Net)] means�My cost to 
go to  Net is D (v,Net)�

v n
[Net , D(v,Net)]



Initiating Routing Table I
• Suppose a new node v becomes active
• The cost to access directly connected networks is 

zero:
– D (v, Net(v,m)) = 0
– D (v, Net(v,w)) = 0
– D (v, Net(v,n)) = 0

Dest
c (v,w)

Net(v,w)

0-

costvia
(next hop)

Net(v,m)

RoutingTable
c(v,m)

Net(v,m)

c(v,n)
Net(v,n) 0-Net(v,w)

0-Net(v,n)
n

v wm



n

v wm

[NetN,D(n,NetN)]

[Net1,D(n,Net1)]

[NetN,D(m,NetN)]

[Net1,D(m,Net1)]

[NetN,D(w,NetN)]

[Net1,D(w,Net1)]

Initiating Routing Table III

• Node v receives the routing tables from other 
nodes and builds up its routing table 



Updating Routing Tables I

c(v,m)
Net(v,m)

n

v wmNet
[Net,D(m,Net)]

• Suppose node v receives a message from node m: [Net,D(m,Net)]

if  ( D(m,Net) + c (v,m) < D (v,Net) ) {
Dnew (v,Net) := D (m,Net) + c (v,m);
Update routing table;
send message [Net, Dnew (v,Net)] to all neighbors

}

Node v updates its routing table and sends out further 
messages if the message reduces the cost of a route:



Example

Router A Router B Router C Router D

10.0.2.0/24 10.0.3.0/24 10.0.4.0/24 10.0.5.0/2410.0.1.0/24

.1.2.2.2.2 .1.1.1

Assume:  - link cost is 1, i.e., c(v,w) = 1
- all updates, updates occur simultaneously
- Initially, each router only knows the cost of 
connected interfaces

t=0:
10.0.1.0 - 0
10.0.2.0 - 0 

Net       via co
st

t=0:
10.0.2.0 - 0
10.0.3.0 - 0

Net       via co
st

t=0:
10.0.3.0 - 0
10.0.4.0 - 0

Net       via co
st

t=0:
10.0.4.0 - 0
10.0.5.0 - 0

Net       via co
st

t=1:
10.0.1.0 - 0
10.0.2.0 - 0 
10.0.3.0 10.0.2.2  1

t=2:
10.0.1.0 - 0
10.0.2.0 - 0 
10.0.3.0 10.0.2.2  1
10.0.4.0 10.0.2.2  2

t=2:
10.0.1.0 10.0.2.1  1 
10.0.2.0 - 0
10.0.3.0 - 0
10.0.4.0 10.0.3.2  1
10.0.5.0 10.0.3.2  2

t=1:
10.0.1.0 10.0.2.1  1 
10.0.2.0 - 0
10.0.3.0 - 0
10.0.4.0 10.0.3.2  1 

t=2:
10.0.1.0 10.0.3.1  2 
10.0.2.0 10.0.3.1  1 
10.0.3.0 - 0
10.0.4.0 - 0
10.0.5.0 10.0.4.2  1

t=1:
10.0.2.0 10.0.3.1  1 
10.0.3.0 - 0
10.0.4.0 - 0
10.0.5.0 10.0.4.2  1 

t=2:
10.0.2.0 10.0.4.1  2
10.0.3.0 10.0.4.1  1
10.0.4.0 - 0
10.0.5.0 - 0

t=1:
10.0.3.0 10.0.4.1  1
10.0.4.0 - 0
10.0.5.0 - 0



Example

Router A Router B Router C Router D

10.0.2.0/24 10.0.3.0/24 10.0.4.0/24 10.0.5.0/2410.0.1.0/24

.1.2.2.2.2 .1.1.1

t=3:
10.0.1.0 - 0
10.0.2.0 - 0 
10.0.3.0 10.0.2.2  1
10.0.4.0 10.0.2.2  2
10.0.5.0 10.0.2.2  3

Net       via co
st

t=3:
10.0.1.0 10.0.2.1  1 
10.0.2.0 - 0
10.0.3.0 - 0
10.0.4.0 10.0.3.2  1
10.0.5.0 10.0.3.2  2

Net       via co
st

t=3:
10.0.1.0 10.0.3.1  2 
10.0.2.0 10.0.3.1  1 
10.0.3.0 - 0
10.0.4.0 - 0
10.0.5.0 10.0.4.2  1

Net       via co
st

t=3:
10.0.1.0 10.0.4.1  3
10.0.2.0 10.0.4.1  2
10.0.3.0 10.0.4.1  1
10.0.4.0 - 0
10.0.5.0 - 0

Net       via co
st

Now, routing tables have converged !

t=2:
10.0.1.0 - 0
10.0.2.0 - 0 
10.0.3.0 10.0.2.2  1
10.0.4.0 10.0.2.2  2

t=2:
10.0.1.0 10.0.2.1  1 
10.0.2.0 - 0
10.0.3.0 - 0
10.0.4.0 10.0.3.2  1
10.0.5.0 10.0.3.2  2

t=2:
10.0.1.0 10.0.3.1  2
10.0.2.0 10.0.3.1  1 
10.0.3.0 - 0
10.0.4.0 - 0
10.0.5.0 10.0.4.2  1

t=2:
10.0.2.0 10.0.4.1  2
10.0.3.0 10.0.4.1  1
10.0.4.0 - 0
10.0.5.0 - 0



Characteristics of Distance Vector 
Routing Protocols

• Periodic Updates: Updates to the routing tables are sent at the 
end of a certain time period. A typical value is 30 seconds

• Triggered Updates: If a metric changes on a link, a router 
immediately sends out an update without waiting for the end 
of the update period

• Full Routing Table Update: Most  distance vector routing 
protocol send their neighbors the entire routing table (not only 
entries which change)

• Route invalidation timers: Routing table entries are invalid if 
they are not refreshed. A typical value is to invalidate an entry 
if no update is received after 3-6  update periods.



The Count-to-Infinity Problem
A B C1 1

A's Routing Table B's Routing Table

C

to costvia
(next hop)

2B C

to costvia
(next hop)

1C

now link B-C goes down

C 2 C

C ∞-C 2B

C C 3

C 3AC -

C 4 C

C -C 4B

∞

∞
∞

∞

∞



Count-to-Infinity 

• The reason for the count-to-infinity problem is 
that each node only has a �next-hop-view�

• For example, in the first step, A did not realize 
that its route (with cost 2) to C went through 
node B

• How can the Count-to-Infinity problem be 
solved?



Solutions to Count-to-Infinity 
• The reason for the count-to-infinity problem is that 

each node only has a �next-hop-view�

• For example, in the first step, A did not realize that its 
route (with cost 2) to C went through node B

• How can the Count-to-Infinity problem be solved?

• Solution 1: Always advertise the entire path in an 
update message to avoid loops (Path vectors)

– BGP uses this solution



Count-to-Infinity 
• The reason for the count-to-infinity problem is that each node 

only has a �next-hop-view�

• For example, in the first step, A did not realize that its route 
(with cost 2) to C went through node B

• How can the Count-to-Infinity problem be solved?
• Remedy 2: Never advertise the cost to a neighbor if this 

neighbor is the next hop on the current path (Split Horizon)
– Example: A would not send the first routing update to B, since B is the next 

hop on A�s current route to C
– Split horizon with poison reverse

• Sends to the next hop neighbor an invalid route (C, ∞)
– Only solve the problem if routing loops involve only two nodes

• Remedy 3: Has a small infinity (16) so that routing messages 
will not bounce forever



RIP - Routing Information Protocol
• A simple intra-domain protocol

• Straightforward implementation of Distance Vector Routing

• Each router advertises its distance vector every 30 seconds (or 
whenever its routing table changes) to all of its neighbors

• RIP always uses 1 as link metric

• Maximum hop count is 15, with �16� equal to �¥�

• Routes are timeout (set to 16) after 3 minutes if they are not 
updated



RIP - History
• Late 1960s : Distance Vector protocols were used in the 

ARPANET  
• Mid-1970s: XNS (Xerox Network system) routing protocol 

is the ancestor of RIP in IP
• 1982 Release of routed for  BSD Unix
• 1988 RIPv1 (RFC 1058)

- classful routing
• 1993 RIPv2 (RFC 1388)

- adds subnet masks with each route entry
- allows classless routing

• 1998 Current version of RIPv2 (RFC 2453)



RIPv1  Packet Format
IP header UDP header RIP Message

Command Version Set to 00...0

32-bit address

Unused (Set to 00...0)

address family Set to 00.00

Unused (Set to 00...0)

metric (1-16)

on
e 

ro
ut

e 
en

tr
y

(2
0 

by
te

s)

Up to 24 more routes (each 20 bytes)

32 bits

One RIP message  can 
have up to 25 route entries

1: request
2: response

2: for IP

Address of destination

Cost (measured in hops)

1: RIPv1



RIPv2

• RIPv2 is an extends RIPv1:
– Subnet masks are carried in the route information
– Authentication of routing messages
– Route information carries next-hop address
– Uses IP multicasting to send routing messages

• Extensions of RIPv2 are carried in unused 
fields of RIPv1 messages



RIPv2  Packet Format
IP header UDP header RIP Message

Command Version Set to 00...0

32-bit address

Unused (Set to 00...0)

address family Set to 00.00

Unused (Set to 00...0)

metric (1-16) on
e 

ro
ut

e 
en

tr
y

(2
0 

by
te

s)

Up to 24 more routes (each 20 bytes)

32 bits

One RIP message  can 
have up to 25 route entries

1: request
2: response

2: for IP

Address of destination

Cost (measured in hops)

2: RIPv2



RIPv2  Packet Format
IP header UDP header RIPv2 Message

Command Version Set to 00.00

IP address

Subnet Mask

address family route tag

Next-Hop IP address

metric (1-16) o
n

e 
ro

u
te

 e
n

tr
y

(2
0 

b
yt

es
)

Up to 24 more routes (each 20 bytes)

32 bits

Used to provide a 
method of separating 
"internal" RIP routes 
(routes for networks 
within the RIP routing 
domain) from "external" 
RIP routes

Identifies a better next-hop 
address on the same 
subnet than the advertising 
router, if one exists  
(otherwise 0….0)

2: RIPv2

Subnet mask for IP 
address



RIP Messages

• This is  the operation of RIP in routed. 
Dedicated port for RIP is UDP port 520.

• Two types of messages: 
– Request messages
• used to ask neighboring nodes for an update

– Response messages
• contains an update



Routing with RIP
• Initialization: Send a request packet (command = 1, address family=0..0) 

on all interfaces:
• RIPv1 uses broadcast if possible, 
• RIPv2 uses multicast address 224.0.0.9, if possible  

requesting routing tables from neighboring routers 

• Request received: Routers that receive above request send their entire 
routing table

• Response received: Update the routing table

• Regular routing updates: Every 30 seconds, send all or part of the routing 
tables to every neighbor in an response message

• Triggered Updates: Whenever the metric for a route change, send the 
entire routing table 



RIP Security
• Issue: Sending bogus routing updates to a 

router
• RIPv1: No protection
• RIPv2: Simple authentication scheme

IP header UDP header RIPv2 Message

Command Version Set to 00.00

Password (Bytes 0 - 3)

Password (Bytes 4 - 7)

0xffff Authentication Type

Password (Bytes 8- 11)

Password (Bytes 12 - 15) A
u

th
e
ti

c
a
ti

o
n

Up to 24 more routes (each 20 bytes)

32 bits

2: plaintext
password



RIP Problems

• RIP takes a long time to stabilize
– Even for a small network, it takes several minutes 

until the routing tables have settled after a change

• RIP has all the problems of distance vector 
algorithms, e.g., count-to-Infinity 

» RIP uses split horizon to avoid count-to-infinity

• The maximum path in RIP is 15 hops



Summary

• Dynamic Routing
– RIP


