## CS 356: Computer Network Architectures

Lecture 16: IPv6, IP tunnels, and (brief) Midterm Review

[PD] chapter 4.1.3, 3.2.9

Xiaowei Yang xwy@cs.duke.edu

## History

• In early 90s, IPv4 is running out of addresses

 Changing to a larger address space requires many changes

IETF solicited other desired features

• Chose one for IPv6 (**RFC 2460**) in 1998

#### IPv6 features

- Large address space (128-bit)
- Hierarchical addressing and routing
- Autoconfiguration
- Built-in security
- Better support for QoS
- New protocols for neighboring node interactions
- Extensibility

## Addressing

- 128-bit addresses
  - $-2^{128}$
- "if the earth were made entirely out of 1 cubic millimetre grains of sand, then you could give a unique [IPv6] address to each grain in 300 million planets the size of the earth"
- <a href="http://en.wikipedia.org/wiki/IP\_address">http://en.wikipedia.org/wiki/IP\_address</a>
- Or, using a more earthly analogy:
- "The optimistic estimate would allow for 3,911,873,538,269,506,102 addresses per square meter of the surface of the planet Earth." "IP Next Generation Overview"
- R. Hinden, Communications of the ACM, Vol. 39, No. 6 (June 1996) pp 61 71, ISSN:0001-0782
  <a href="http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=228517">http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=228517</a>

#### IPv6 Addresses

- Classless addressing/routing (similar to CIDR)
- Notation: x:x:x:x:x:x:x:x:x:x:x (x = 16-bit hex number)
  - contiguous 0s are compressed: 47CD::A456:0124
  - IPv6 compatible IPv4 address:

::FFFF:128.42.1.87

## IPv6 addressing architecture

- RFC 4291
- All addresses are assigned to interfaces, not nodes

## Types of IPv6 addresses

| Address type       | Binary prefix                | IPv6 notation |
|--------------------|------------------------------|---------------|
| Unspecified        | 000 (128 bits)               | ::/128        |
| Loopback           | 001 (128 bits)               | ::1/128       |
| Multicast          | 11111111                     | FF00::/8      |
| Link-local unicast | 1111111010                   | FE80::/10     |
| Global unicast     | Everything else              |               |
| Anycast            | Allocated from unicast space |               |

#### Global Unicast Addresses

Global routing prefix n bits

Subnet ID m bits

Interface ID 128-n-m bits (typically 64 bits)

- For all unicast addresses, except those that start with the binary value 000, Interface IDs are required to be 64 bits long
  - Can be derived from 48-bit Ethernet address

#### IPv6 Header

- 40-byte "base" header
- Extension headers (fixed order, mostly fixed length)
  - fragmentation
  - source routing
  - authentication and security
  - other options



## Autoconfiguration

- Link-local prefix + interface ID
- Routers advertise global prefixes

## IPv6 Anycast Addresses

Subnet prefix (n bits)

0000000 (128 - n bits)

- Assigned to more than one interface
- All zero interface address
- Allocated from the unicast address space
- Ex: all root DNS servers

### IP Tunnels

#### IP tunnels

- Tunnels
  - A technique used in many scenarios
    - VPN, IPv4-v6 transition, Mobile IP, Multicast, Non-IP forwarding, IPsec

#### What is a tunnel



- A "pseudowire", or a virtual point-to-point link
- The head router encapsulates a packet in an outer header destined to the tail router

#### Virtual interface

• A router adds a tunnel header for packets sent to a virtual interface

| NetworkNum | nextHop |  |
|------------|---------|--|
| 10/8       | ether0  |  |
| 20/8       | tun0    |  |
| 0/0        | ether1  |  |

## Tunnel applications

• Traversing a region of network with a different addressing format or with insufficient routing knowledge

Building virtual private networks

FIGURE 3.26 An example of virtual private networks: (a) two separate private networks; (b) two virtual private networks sharing common switches.



#### IPv4-v6 transition



# Generic Routing Encapsulation (GRE)

- Defined in <u>RFC 2784</u> and updated by <u>RFC 2890</u>
- Can encapsulate any inner header

Outer IP Header GRE Header Inner IP Header Payload

| скѕ             | Reserved | Ver | Protocol |  |  |
|-----------------|----------|-----|----------|--|--|
|                 | Checksum |     | Reserved |  |  |
| Key             |          |     |          |  |  |
| Sequence Number |          |     |          |  |  |

## (brief) Midterm Review

## Expectations

Fundamental concepts

Key algorithms / protocols

## Midterm Policy

- Up to Feb 28's lecture
- Closed book/notes
- One page of your own note (letter-size)
  - Two sides notes are okay
- No Internet
- Calculator is allowed
- 75 mins

#### What we've learned

- Network architectures
  - Basic concepts, Internet architecture,
- Physical layer
  - Delay, bandwidth, and throughput
  - Delay bandwidth product
- Link layer
  - Coding/encoding, framing, error detection, reliable transmission
  - Multi-access links
  - Switching, bridges, ATM

### What we've learned (cont.)

- Internetworking
  - Challenges, solutions
  - Classful vs classless IP addressing
  - IP forwarding, longest prefix lookup, ARP, ICMP
  - Dynamic routing protocols
    - Distance vector (RIP)
    - Link state (OSPF)
    - BGP
  - DHCP, and NAT

#### Common confusion

- KB, MB, etc.
- <a href="https://en.wikipedia.org/wiki/Kilobyte">https://en.wikipedia.org/wiki/Kilobyte</a>
- "In December 1998, the <u>IEC</u> addressed such multiple usages and definitions by creating prefixes such as kibi, mebi, gibi, etc., to unambiguously denote powers of 1024. Thus the <u>kibibyte</u>, symbol KiB, represents  $2^{10} = 1024$  bytes. These prefixes are now part of the <u>International System of Quantities</u>. The IEC further specified that the kilobyte should only be used to refer to 1000 bytes."

## How to compute the size of sliding window

• Example from midterm

## Construct the path to reach a destination



| Step | Confirmed                            | Tentative           |
|------|--------------------------------------|---------------------|
| 1    | (D,0,-)                              |                     |
| 2    | (D,0,-)                              | (B,11,B), (C,2,C)   |
| 3    | (D,0,-), (C,2,C)                     | (B,11,B)            |
| 4    | (D,0,-), (C,2,C)                     | (B,5,C)<br>(A,12,C) |
| 5    | (D,0,-), (C,2,C), (B,5,C)            | (A,12,C)            |
| 6    | (D,0,-),(C,2,C),(B,5,C)              | (A,10,C)            |
| 7    | (D,0,-),(C,2,C),(B,5,C),<br>(A,10,C) |                     |