
CS 356: Introduction to Computer
Networks

Lecture 19: Transmission Control

Protocol (TCP)
Chap. 5.2

Xiaowei Yang
xwy@cs.duke.edu

Overview

•  TCP
– Connection management
– Flow control
– When to transmit a segment
– Adaptive retransmission
– TCP options

•  Modern extensions

Transmission Control Protocol
•  Connection-oriented protocol
•  Provides a reliable unicast end-to-end byte stream

over an unreliable internetwork

TCP

IP Internetwork

B
yt

e
S

tre
am

B
yt

e
S

tre
am

TCP

TCP performance is critical to
business

Source: http://www.webperformancetoday.com/2011/11/23/case-study-
slow-page-load-mobile-business-metrics/

Source: http://www.webperformancetoday.com/2012/02/28/4-awesome-slides-
showing-how-page-speed-correlates-to-business-metrics-at-walmart-com/

Connection establishment/tear down

•  Active/passive open

•  Active/passive close, simultaneous close

TCP state diagram

•  Two events
trigger
transitions:
–  Packet

arrival
–  Application

operations
•  Half-close end

may still receive
data

•  Time_Wait
–  Must wait

because ACK
may be lost

–  The other end
may retransmit
FIN

TCP States in “Normal”
Connection Lifetime

SYN (SeqNo = x)

SYN (SeqNo = y, AckNo = x + 1)

(AckNo = y + 1)

SYN_SENT
(active open)

SYN_RCVD

ESTABLISHED

ESTABLISHED

FIN_WAIT_1
(active close)

LISTEN
(passive open)

FIN (SeqNo = m)

CLOSE_WAIT
(passive close)

(AckNo = m+ 1)

FIN (SeqNo = n)

 (AckNo = n+1)
LAST_ACK

FIN_WAIT_2

TIME_WAIT

CLOSED

2MSL Wait State
2MSL= 2 * Maximum Segment Lifetime

2MSL Wait State = TIME_WAIT
•  When TCP does an active close, and sends the final ACK, the connection must

stay in the TIME_WAIT state for twice the maximum segment lifetime.
•  The socket pair (srcIP, srcPort, dstIP, dstPort) cannot be reused

•  Why?
•  To prevent mixing packets

from two different
incarnations of the same
connection

FIN

ACK

ACK

FIN

A B

X Time_Wait

Resetting Connections
•  Resetting connections is done by setting the

RST flag
•  When is the RST flag set?

– Connection request arrives and no server process is
waiting on the destination port

– Abort a connection causes the receiver to throw
away buffered data

– Receiver does not acknowledge the RST segment
– Abused in practice to block applications

Flow control

Sliding window revisited

•  Invariants
–  LastByteAcked ≤ LastByteSent
–  LastByteSent ≤ LastByteWritten
–  LastByteRead < NextByteExpected
–  NextByteExpected ≤ LastByteRcvd + 1

•  Limited sending buffer and Receiving buffer

Sender Window Size Receiver Window Size

Buffer Sizes vs Window Sizes

•  Maximum SWS ≤ MaxSndBuf
•  Maximum RWS ≤ MaxRcvBuf –

((NextByteExpected-1) – LastByteRead)

TCP Flow Control

•  Q: how does a receiver prevent a sender from
overrunning its buffer?

•  A: use AdvertisedWindow

IP header TCP header TCP data

Sequence number (32 bits)

DATA

20 bytes 20 bytes

 0 15 16 31

Source Port Number Destination Port Number

Acknowledgement number (32 bits)

window sizeheader
length 0 Flags

Options (if any)

TCP checksum urgent pointer

20 bytes

Invariants for flow control

•  Receiver side:
– LastByteRcvd – LastByteRead ≤ MaxRcvBuf
– AdvertisedWindow = MaxRcvBuf –

((NextByteExpected - 1) – LastByteRead)

Invariants for flow control

•  Sender side:
EffectiveWindow = AdvertisedWindow –
(LastByteSent – LastByteAcked)

– LastByteWritten – LastByteAcked ≤ MaxSndBuf
•  Sender process would be blocked if send buffer is full

Window probes
•  What if a receiver advertises a window size of

zero?
– Problem: Receiver can’t send more ACKs as sender

stops sending more data

•  Design choices
– Receivers send duplicate ACKs when window opens
– Sender sends periodic 1 byte probes

•  Why?
– Keeping the receive side simple à Smart sender/dumb

receiver

When to send a segment?

•  App writes bytes to a TCP socket
•  TCP decides when to send a segment

•  Design choices when window opens:
– Send whenever data available
– Send when collected Maximum Segment Size data

•  Why?
•  More efficient

Push flag

•  What if App is interactive, e.g. ssh?
– App sets the PUSH flag
– Flush the sent buffer

Silly Window Syndrome

•  Now considers flow control
– Window opens, but does not have MSS bytes

•  Design choice 1: send all it has
•  E.g., sender sends 1 byte, receiver acks 1, acks opens

the window by 1 byte, sender sends another 1 byte, and
so on

Sending smaller segments

Silly Window Syndrome

How to avoid Silly Window
Syndrome

•  Receiver side
– Do not advertise small window sizes
– Min (MSS, MaxRecvBuf/2)

•  Sender side
– Wait until it has a large segment to send
– Q: How long should a sender wait?

Sender-Side Silly Window
Syndrome avoidance

•  Nagle’s Algorithm
– Self-clocking

•  Interactive applications
may turn off Nagle’s
algorithm using the
TCP_NODELAY socket
option

When app has data to send
 if data and window >= MSS
 send a full segment
 else
 if there is unACKed data
 buffer new data until ACK
 else
 send all the new data now

TCP window management
summary

•  Receiver uses AdvertisedWindow for flow
control

•  Sender sends probes when AdvertisedWindow
reaches zero

•  Silly Window Syndrome avoidance
– Receiver: do not advertise small windows
– Sender: Nagle’s algorithm

Overview

•  TCP
– Connection management
– Flow control
– When to transmit a segment
– Adaptive retransmission
– TCP options

•  Modern extensions

TCP Retransmission

•  A TCP sender retransmits a segment when it
assumes that the segment has been lost

•  How does a TCP sender detect a segment
loss?
–  Timeout
–  Duplicate ACKs (later)

How to set the timer

•  Challenge: RTT unknown and variable

•  Too small
– Results in unnecessary retransmissions

•  Too large
– Long waiting time

Adaptive retransmission
•  Estimate a RTO value based on round-trip time

(RTT) measurements

Segment 1

Segment 4

ACK for Segment 1

Segment 2
Segment 3

 ACK for Segment 2 + 3

Segment 5

 ACK for Segment 4

 ACK for Segment 5

RTT #1
RTT #2

RTT #3

•  Implementation: one
timer per connection

•  Q: Retransmitted
segments?

Karn’s Algorithm

•  Ambiguity •  Solution: Karn’s
Algorithm:
–  Don’t update RTT on

any segments that have
been retransmitted

segment

ACK

retransmissionof segment

Timeout !

RTT ? RTT ?

Setting the RTO value
•  Uses an exponential moving average (a low-pass

filter) to estimate RTT (srtt) and variance of RTT
(rttvar)
–  The influence of past samples decrease exponentially

•  The RTT measurements are smoothed by the
following estimators srtt and rttvar:
 srttn+1 = α RTT + (1- α) srttn
 rttvarn+1 = β (| RTT – srttn |) + (1- β) rttvarn
 RTOn+1 = srttn+1 + 4 rttvarn+1

–  The gains are set to α =1/4 and β =1/8
–  Negative power of 2 makes it efficient for implementation

Setting the RTO value (cont’d)
•  Initial value for RTO:

–  Sender should set the initial value of RTO to
 RTO0 = 3 seconds

•  RTO calculation after first RTT measurements arrived

 srtt1 = RTT
 rttvar1 = RTT / 2

 RTO1 = srtt1 + 4 rttvarn+1

•  When a timeout occurs , the RTO value is doubled

 RTOn+1 = max (2 RTOn , 64) seconds

This is called an exponential backoff

Overview

•  TCP
– Connection management
– Flow control
– When to transmit a segment
– Adaptive retransmission
– TCP options

•  Modern extensions

TCP header fields
•  Options: (type, length, value)
•  TCP hdrlen field tells how long options are

End of
Options kind=0

1 byte

NOP
(no operation) kind=1

1 byte

Maximum
Segment Size kind=2

1 byte

len=4

1 byte

maximum
segment size

2 bytes

Window Scale
Factor kind=3

1 byte

len=3

1 byte

shift count

1 byte

Timestamp kind=8

1 byte

len=10

1 byte

timestamp value

4 bytes

timestamp echo reply

4 bytes

TCP header fields
•  Options:

– NOP is used to pad TCP header to multiples of 4
bytes

– Maximum Segment Size
– Window Scale Options

•  Increases the TCP window from 16 to 32 bits, i.e., the
window size is interpreted differently

•  This option can only be used in the SYN segment (first
segment) during connection establishment time

– Timestamp Option
•  Can be used for roundtrip measurements

Modern TCP extensions
•  Timestamp

•  Window scaling factor

•  Protection Against Wrapped Sequence Numbers (PAWS)

•  Selective Acknowledgement (SACK)

•  References
–  http://www.ietf.org/rfc/rfc1323.txt
–  http://www.ietf.org/rfc/rfc2018.txt

Improving RTT estimate

•  TCP timestamp option
– Old design

•  One sample per RTT
•  Using host timer

•  More samples to estimate
– Timestamp option

•  Current TS, echo TS

Increase TCP window size

•  16-bit window size
•  Maximum send window <= 65535B
•  Suppose a RTT is 100ms
•  Max TCP throughput = 65KB/100ms = 5Mbps
•  Not good enough for modern high speed links!

IP header TCP header TCP data

Sequence number (32 bits)

DATA

20 bytes 20 bytes

 0 15 16 31

Source Port Number Destination Port Number

Acknowledgement number (32 bits)

window sizeheader
length 0 Flags

Options (if any)

TCP checksum urgent pointer

20 bytes

Protecting against Wraparound

Time until 32-bit sequence number space wraps around.

Solution: Window scaling option

•  All windows are treated as 32-bit
•  Negotiating shift.cnt in SYN packets

–  Ignore if SYN flag not set
•  Sending TCP

– Real available buffer >> self.shift.cnt à
AdvertisedWindow

•  Receiving TCP: stores other.shift.cnt
– AdvertisedWindow << other.shift.cnt à Maximum

Sending Window

Kind = 3

Length = 3 Shift.cnt
Three bytes

Protect Against Wrapped Sequence
Number

•  32-bit sequence number space
•  Why sequence numbers may wrap around?

– High speed link
– On an OC-45 (2.5Gbps), it takes 14 seconds <

2MSL

•  Solution: compare timestamps
– Receiver keeps recent timestamp
– Discard old timestamps

Selective Acknowledgement

•  More when we discuss congestion control

•  If there are holes, ack the contiguous received
blocks to improve performance

Summary

•  Nitty-gritty details about TCP
– Connection management
– Flow control
– When to transmit a segment
– Adaptive retransmission
– TCP options
– Modern extensions
– Next: Congestion Control

•  How does TCP keeps the pipe full?

Midterm statistics

Overall Scores

•  MAXIMUM
–  96.5

•  MEAN
–  79.79

•  MEDIAN
–  82.0

•  STD DEV
–  10.69

Quiz Score
•  Use mean to evaluate
•  Take Quiz 1 82.021739
•  Not Take Quiz 1 72.157895

•  Take Quiz 2 82.025000
•  Not Take Quiz 2 73.500000

•  Either 1 or 2 81.800000
•  Neither 1 nor 2 66.958333

Survey results

•  1. Has the course met your expectations of an
undergraduate networking class so far? If not,
please explain the areas where the course has
not met your expectations.

•  2. Are the lectures given a) at an appropriate
speed; b) too fast; c) too slow? Please circle
one answer.

•  3. Do you have any suggestion on how the
course materials might be improved?

•  4. Do you have any suggestion on how the
instructor might improve her teaching quality?

•  5. Do you have any suggestion on how the TA
might improve his teaching quality?

