CS 356: Introduction to Computer
Networks

Lecture 19: Transmission Control
Protocol (TCP)
Chap. 5.2

Xi1aowel Yang
xwy(@cs.duke.edu

Overview

 TCP

— Connection management

— Flow control

— When to transmit a segment
— Adaptive retransmission

— TCP options

e Modern extensions

Transmission Control Protocol

* Connection-oriented protocol

* Provides a reliable unicast end-to-end byte stream
over an unreliable internetwork

Byte Stream
Byte Stream)

TCP TCP

|

IP Internetwork

TCP performance 1s critical to
business

BOUNGE 'CONVERSION: ~ CART
RATE . RATE . SIZE

CAMms - - 2%
| Si0ms -47% -19% - 5%
| l000ms | -83% -35% . -21% | -94%

Source: http://'www.webperformancetoday.com/2011/11/23/case-study-
slow-page-load-mobile-business-metrics/

Impact of site performance on overall site conversion rate....

Baseline — 1 in 2 site visits had response time > 4 seconds

* Sharp decline in conversion rate as average site load time increases from 1 to 4 seconds

* Overall average site load time is lower for the converted population (3.22 Seconds) than
the non-converted population (6.03 Seconds)

-2 23 34 45 56 6-7 78 89 910 10-17 11-12 1213 1314 1415 »15
Load Time (Seconds)

Page Performance & Site Conversion -~ Feb 2012 walma rt

Source: http://www.webperformancetoday.com/2012/02/28/4-awesome-slides-
showing-how-page-speed-correlates-to-business-metrics-at-walmart-com/

Connection establishment/tear down

» Active/passive open

» Active/passive close, simultaneous close

e Two events

trigger
| Active open/SYN transitions:
Passive open Close . Packe {
| .
m— arrival
—/ ¥ — Application
SYN/SYN + ACK Send/SYN .
operations
SYN_RCVD (= SINGIN + A0k | SYN_SENT p
ACK SYN + ACK/ACK Half-close end
may still receive
CloselFIN ESTABLISHED data
‘ CloseFIN__~ ___FINJACK « Time Wait
FIN_WAIT_1 ' CLOSE_WAIT _ Must wait
\ ,C’OSG’F‘N because ACK
CLOSING LAST_ACK may be lost
ACk Timeout after two ACK — The other end
J segment lifetimes J .
TIME_WAIT = CLOSED may retransmit

FIN

TCP States in “Normal~

SYN_SENT

(active open)

ESTABLISHED

FIN_WAIT_1
(active close)

FIN_WAIT_2

TIME_WAIT

Connection Lifetime

SYN (SeqNo = X)

= 1
SYN (SeaNo = Y, AckNo=Xx*+)

(AckNo=y + 1)

(ACkNo = n.,.—')

FIN (SeqNo = m)

(AckNo =m+ 1) —>
F

FIN (SeqNo =n)
«

4 A

4

LISTEN

(passive open)

SYN_RCVD

ESTABLISHED

CLOSE_WAIT
(passive close)

LAST_ACK

CLOSED

2MSL Wait State

 When TCP does an active close, and sends the final ACK, the connection must
stay in the TIME WAIT state for twice the maximum segment lifetime.

» The socket pair (srcIP, srcPort, dstIP, dstPort) cannot be reused

Time_Wait

FIN

ACK

FIN

ACK

5" Why?
e To prevent mixing packets
from two different

incarnations of the same
connection

Resetting Connections

* Resetting connections 1s done by setting the
RST flag

 When is the RST flag set?

— Connection request arrives and no server process 1s
waiting on the destination port

— Abort a connection causes the receiver to throw
away buffered data

— Receiver does not acknowledge the RST segment

— Abused 1n practice to block applications

Flow control

Sliding window revisited

Sending application

\ TCP
LastByteWritten
\

i i
LastByteAcked LastByteSent

(a)
_'_I

Sender Window Size

 Invariants

Receiving application

/ TCP
LastByteRead

2

$

-

NextByteExpected LastByteRcvd

(b)L'J

Receiver Window Size

— LastByteAcked < LastByteSent

— LastByteSent < LastByteWritten

— LastByteRead < NextByteExpected

— NextByteExpected < LastByteRcvd + 1

« Limited sending buffer and Receiving buffer

Buftfer Sizes vs Window Sizes

Sending application Receiving application

\ TCP / TCP
LastByteWritten LastByteRead
% 3 |1 &
i X o
LastByteAcked LastByteSent NextByteExpected LastByteRcvd
(a) (b)

e Maximum SWS < MaxSndBuf

 Maximum RWS < MaxRcvBuf —
((NextByteExpected-1) — LastByteRead)

TCP Flow Control

IP header |TCP header TCP data

-

20 bytes / 20 bytes T~
/ ~~_

0 4 10 16 31
SrcPort DstPort

SequenceNum

Acknowledgment

HdrLen 0 Flags AdvertisedWindow <:|

Checksum UrgPtr

Options (variable)

Data

W
* Q: how does a recerver prevent a sender from
overrunning its buffer?

 A:use AdvertisesdWindow

Invariants for flow control

Sending application Receiving application

\ TCP / TCP
LastByteWritten LastByteRead
| v
i) o
LastByteAcked LastByteSent NextByteExpected LastByteRcvd
(a) (b)

e Receiver side:
— LastByteRcvd — LastByteRead < MaxRcvBuf

— AdvertisedWindow = MaxRcvBuf —
((NextByteExpected - 1) — LastByteRead)

Invariants for tflow control

Sending application
TCP

LastByteWritten

1

i A
LastByteAcked LastByteSent

\ (a),

* Sender side:

Receiving application

/ TCP
LastByteRead

%

3

b

NextByteExpected LastByteRcvd

(b)_'_l

EffectiveWindow = AdvertisedWindow —
(LastByteSent — LastByteAcked)

— LastByteWritten — LastByteAcked < MaxSndBuf

» Sender process would be blocked if send buffer 1s full

Sender Receiver Receiver's

Application buffer

doesa2K

write 0 4K
Empty

El%

2K
- —_[ACK = 2048 WIN = 2048 |—
Application
doesa2K ——=
write 2K | SEQ=2048
Full
Sender is) Application
blocked reads 2K
2K
Sender may
send up to 2K —=

m SEQ
~="°93 1k | 2k

Window probes

e What if a recerver advertises a window size of
zZero?

— Problem: Receiver can’t send more ACKs as sender
stops sending more data

* Design choices
— Receivers send duplicate ACKs when window opens
— Sender sends periodic 1 byte probes ¢/

 Why?

— Keeping the receive side simple = Smart sender/dumb
recelver

When to send a segment?

* App writes bytes to a TCP socket
» TCP decides when to send a segment

* Design choices when window opens:

— Send whenever data available

— Send when collected Maximum Segment Size data ¢/
 Why?
* More efficient

Push flag

* What if App 1s interactive, €.g. ssh?
— App sets the PUSH flag
— Flush the sent buffer

Silly Window Syndrome

* Now considers flow control
— Window opens, but does not have MSS bytes

* Design choice 1: send all it has

* E.g., sender sends 1 byte, receiver acks 1, acks opens
the window by 1 byte, sender sends another 1 byte, and
SO On

Sending smaller segments

Client Server
UNA = SND.WND = 360 _
i Usable = 360 RCV.WND = 360
A
SND.NXT =1 RCV.NXT =1
. Segment
1. Send 360-Byte Segment [Seglert
SND.UNA =1 SND.WND = 360 Seq Num=1
4 Usable =0 i
2. Receive Segment; Send Ack,
360 Azkﬁwledgggnt_, Reduce Window To 120
c um-=
SND.NAT = 361 Window = 120 RCV.WND = 120
3. Reduce Send Window to 120; el
Send 120-Byte Segment Segment
Length=120 RCV.NXT = 361
SND.WND =120 sNp.UNA = 361 Seq Num=361
Usable =0 .
4. Receive Segment; Send Ack,
“ 120 Azkﬁwledgzvs‘in{,, Reduce Window To 80
c um-=
SND.NKT = 481 Window = 80 RCV.WND = 80
‘/ e
3. Reduce Send Window to 80; [
Send 80-Byte Segment Segment -
Length=80 RCV.NXT = 481
SND.WND = 50 SND.UNA = 481 Seq Num=431
Usable =0)
=] 4. Receive Segment; Send Ack,
| 360 | 120 E Acknowledgment Reduce Window To 67
|
]
Ack Num = 561 =
SND.NXT = 561 Window = 67 St

A"/’ -

(e [2E]

RCV.NXT = 561

Silly Window Syndrome

Sender Receiver

How to avoid Silly Window
Syndrome

e Recelver side

— Do not advertise small window sizes
— Min (MSS, MaxRecvBui/2)

* Sender side
— Wait until it has a large segment to send
— Q: How long should a sender wait?

Sender-Side Silly Window
Syndrome avoidance

’ . When app has data to send
* Nagle S AlgOrlthm if data and window >= MSS
. Self—clocking send a full segment
else

if there is unACKed data
buffer new data until ACK
else
send all the new data now

* Interactive applications
may turn off Nagle’s
algorithm using the
TCP NODELAY socket

option

TCP window management
summary

e Receiver uses AdvertisedWindow for flow
control

* Sender sends probes when AdvertisedWindow
reaches zero

* Silly Window Syndrome avoidance
— Receiver: do not advertise small windows

— Sender: Nagle’s algorithm

Overview

 TCP

— Connection management

— Flow control

— When to transmit a segment
— Adaptive retransmission

— TCP options

e Modern extensions

TCP Retransmission

A TCP sender retransmits a segment when it
assumes that the segment has been lost

 How does a TCP sender detect a segment
loss?

— Timeout
— Duplicate ACKs (later)

How to set the timer

* Challenge: RTT unknown and variable

e Too small

— Results 1n unnecessary retransmissions

* Too large

— Long waiting time

Adaptive retransmission

* Estimate a RTO value based on round-trip time
(RTT) measurements

* Implementation: one 31 etmentl__ ;
. . a4 CK for Segmen
timer per connection)
4 Segment 2

Segment 3

* Q: Retransmitted >‘W<
SegmentS? 4 Segment] Segment 4
ACK for Segment 4

ACK for Segment 3
y

c# 11y

€# L1Y

¢ 11d

Karn’s Algorithm

Ambiguity

¢ 11Y

seQ’hent

retransmission

!
——Segment

pck

* Solution: Karn’s
Algorithm:
— Don’t update RTT on

any segments that have
been retransmitted

Setting the RTO value

« Uses an exponential moving average (a low-pass
filter) to estimate RTT (srtf) and variance of RTT
(rttvar)

— The influence of past samples decrease exponentially

* The RTT measurements are smoothed by the
following estimators srt¢ and rttvar:

srtt, ., =a RTT + (I- a) srtt,
rttvar, ., = B (| RTT—srtt, |) + (I- p) rttvar,

RTO,, , = srtt,, , + 4 ritvar,

— The gains are setto o =1/4 and =1/8
— Negative power of 2 makes it efficient for implementation

Setting the RTO value (cont’d)

e Initial value for RTO:

— Sender should set the 1nitial value of RTO to
RTO, = 3 seconds

e RTO calculation after first RTT measurements arrived

srtt; = RTT
rttvar; = RTT /2

RTO, = srtt; + 4 rttvar,

 When a timeout occurs , the RTO value 1s doubled
RTO,. ; =max (2 RTO,, 64) seconds

This 1s called an exponential backoff

Overview

 TCP

— Connection management

— Flow control

— When to transmit a segment
— Adaptive retransmission

— TCP options

e Modern extensions

TCP header fields
. (type, length, value)

* TCP hdrlen field tells how long options are

End of)
Options kind=0
1 byte
NOP i
(no operation) kind=1
1 byte
Maximum i maximum
. kind=2 len=4 i
Segment Size segment size
1 byte 1 byte 2 bytes
Window Scale T _ .
Factor kind=3 len=3 shift count
1 byte 1 byte 1 byte
Timestamp kind=8 len=10 timestamp value timestamp echo reply

1 byte 1 byte 4 bytes 4 bytes

TCP header fields

— NOP 1s used to pad TCP header to multiples of 4
bytes

— Maximum Segment Size
— Window Scale Options

 Increases the TCP window from 16 to 32 bits, 1.e., the
window size 1s interpreted differently

 This option can only be used in the SYN segment (first
segment) during connection establishment time

— Timestamp Option
* Can be used for roundtrip measurements

Modern TCP extensions

Timestamp
Window scaling factor
Protection Against Wrapped Sequence Numbers (PAWS)

Selective Acknowledgement (SACK)

References
— http://www.ietf.org/rfc/rfc1323.txt
— http://www.ietf.org/rfc/rfc2018.txt

Improving RTT estimate

* TCP timestamp option

— Old design
e One sample per RTT

e Using host timer

* More samples to estimate
— Timestamp option
e Current TS, echo TS

Increase TCP window size

16-bit window size
Maximum send window <= 65535B
Suppose a RTT 1s 100ms

Max TCP throughput = 65KB/100ms = 5Mbps
Not good enough for modern high speed links!

Protecting against Wraparound

Bandwidth Time until Wraparound
T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

Fast Ethernet (100 Mbps) | 6 minutes

OC-3 (155 Mbps) 4 minutes
0C-12 (622 Mbps) 55 seconds
0C-48 (2.5 Gbps) 14 seconds

Time until 32-bit sequence number space wraps around.

Solution: Window scaling option

Kind = 3

Length =3

Shift.cnt

All windows are treated as 32-bit
Negotiating shift.cnt in SYN packets

— Ignore 1f SYN flag not set

Sending TCP

— Real available buffer >> self.shift.cnt =2
AdvertisedWindow

Receiving TCP: stores other.shift.cnt

Three bytes

— AdvertisedWindow << other.shift.cnt 2 Maximum

Sending Window

Protect Against Wrapped Sequence
Number

 32-bit sequence number space

 Why sequence numbers may wrap around?
— High speed link

— On an OC-45 (2.5Gbps), it takes 14 seconds <
2MSL

* Solution: compare timestamps

— Recerver keeps recent timestamp
— Discard old timestamps

Selective Acknowledgement

 More when we discuss congestion control

 If there are holes, ack the contiguous received
blocks to improve performance

Summary

* Nitty-gritty details about TCP
— Connection management
— Flow control
— When to transmit a segment
— Adaptive retransmission
— TCP options
— Modern extensions

— Next: Congestion Control
* How does TCP keeps the pipe full?

Midterm statistics

Overall Scores

MAXIMUM
- 96.5

MEAN
—79.79

MEDIAN
— 32.0

STD DEV
— 10.69

CSECE 356 19sp midterm score distribution

Quiz Score

Use mean to evaluate
Take Quiz1 82.021739

Not Take Quiz 1 72.157895

Take Quiz2 82.025000
Not Take Quiz 2 73.500000

Either 1 or2 &1.800000
Neither 1 nor 2 66.958333

Survey results

1. Has the course met your expectations of an
undergraduate networking class so far? If not,
please explain the areas where the course has
not met your expectations.

1. Meet Your ExFPectations
refeﬁjmﬂr&alﬁst
Need more HW

Meet my expectation

« 2. Are the lectures given a) at an appropriate
speed; b) too fast; ¢) too slow? Please circle
one answer.

2. Lecture Speed
Too Slow

Too Fast

Good Speed

e 3. Do you have any suggestion on how the
course materials might be improved?

3. Advice for course

Refine the lecture and slide
More example

More Instruction for lab

More HW, lab

No Problem

* 4. Do you have any suggestion on how the
instructor might improve her teaching quality?

4. Advice for Teacher

More Detailed info in Slides

More Detailed info in Piazzza Answers

No enough TA
No Problem

Slow down

Lack Stereo in Recordings

More examples

Need Better Microphone

* 5. Do you have any suggestion on how the TA
might improve his teaching quality?

5. Advice for TA

More Detailed Info in Piazza Answers

More OH, night OH and Weekend OH

No Problem

