## CS 356: Introduction to Computer Networks

Lecture 19: Transmission Control
Protocol (TCP)
Chap. 5.2

Xiaowei Yang xwy@cs.duke.edu

## Overview

- TCP
  - Connection management
  - Flow control
  - When to transmit a segment
  - Adaptive retransmission
  - TCP options
    - Modern extensions

#### Transmission Control Protocol

- Connection-oriented protocol
- Provides a reliable unicast end-to-end byte stream over an unreliable internetwork



## TCP performance is critical to business



Source: http://www.webperformancetoday.com/2011/11/23/case-study-slow-page-load-mobile-business-metrics/

#### Impact of site performance on overall site conversion rate....



Page Performance & Site Conversion - Feb 2012



Source: http://www.webperformancetoday.com/2012/02/28/4-awesome-slidesshowing-how-page-speed-correlates-to-business-metrics-at-walmart-com/

## Connection establishment/tear down

Active/passive open

• Active/passive close, simultaneous close



- Two events trigger transitions:
  - Packetarrival
  - Application operations
- Half-close end may still receive data
- Time Wait
  - Must waitbecause ACKmay be lost
  - The other end may retransmitFIN

# TCP States in "Normal" Connection Lifetime



### 2MSL Wait State

#### 2MSL= 2 \* Maximum Segment Lifetime

#### **2MSL** Wait State = TIME\_WAIT

- When TCP does an active close, and sends the final ACK, the connection must stay in the TIME\_WAIT state for twice the maximum segment lifetime.
- The socket pair (srcIP, srcPort, dstIP, dstPort) cannot be reused



• Why?

• To prevent mixing packets from two different incarnations of the same connection

## Resetting Connections

- Resetting connections is done by setting the RST flag
- When is the RST flag set?
  - Connection request arrives and no server process is waiting on the destination port
  - Abort a connection causes the receiver to throw away buffered data
  - Receiver does not acknowledge the RST segment
  - Abused in practice to block applications

## Flow control

## Sliding window revisited



- Invariants
  - LastByteAcked ≤ LastByteSent
  - − LastByteSent ≤ LastByteWritten
  - LastByteRead < NextByteExpected</li>
  - NextByteExpected ≤ LastByteRcvd + 1
- Limited sending buffer and Receiving buffer

#### Buffer Sizes vs Window Sizes



- Maximum SWS < MaxSndBuf
- Maximum RWS ≤ MaxRcvBuf –
   ((NextByteExpected-1) LastByteRead)

#### TCP Flow Control



- Q: how does a receiver prevent a sender from overrunning its buffer?
- A: use AdvertisedWindow

### Invariants for flow control



- Receiver side:
  - LastByteRcvd LastByteRead  $\leq$  MaxRcvBuf
  - AdvertisedWindow = MaxRcvBuf –((NextByteExpected 1) LastByteRead)

### Invariants for flow control



• Sender side:

EffectiveWindow = AdvertisedWindow - (LastByteSent – LastByteAcked)

- LastByteWritten LastByteAcked  $\leq$  MaxSndBuf
  - Sender process would be blocked if send buffer is full



## Window probes

- What if a receiver advertises a window size of zero?
  - Problem: Receiver can't send more ACKs as sender stops sending more data

- Design choices
  - Receivers send duplicate ACKs when window opens
  - Sender sends periodic 1 byte probes
- Why?
  - Keeping the receive side simple → Smart sender/dumb receiver

## When to send a segment?

- App writes bytes to a TCP socket
- TCP decides when to send a segment

- Design choices when window opens:
  - Send whenever data available
  - Send when collected Maximum Segment Size data ✓
    - Why?
    - More efficient

## Push flag

- What if App is interactive, e.g. ssh?
  - App sets the PUSH flag
  - Flush the sent buffer

## Silly Window Syndrome

- Now considers flow control
  - Window opens, but does not have MSS bytes

- Design choice 1: send all it has
  - E.g., sender sends 1 byte, receiver acks 1, acks opens the window by 1 byte, sender sends another 1 byte, and so on

## Sending smaller segments



## Silly Window Syndrome



# How to avoid Silly Window Syndrome

- Receiver side
  - Do not advertise small window sizes
  - Min (MSS, MaxRecvBuf/2)

- Sender side
  - Wait until it has a large segment to send
  - Q: How long should a sender wait?

# Sender-Side Silly Window Syndrome avoidance

- Nagle's Algorithm
  - Self-clocking

 Interactive applications may turn off Nagle's algorithm using the TCP\_NODELAY socket option

```
When app has data to send
if data and window >= MSS
send a full segment
else
if there is unACKed data
buffer new data until ACK
else
send all the new data now
```

# TCP window management summary

Receiver uses AdvertisedWindow for flow control

• Sender sends probes when AdvertisedWindow reaches zero

- Silly Window Syndrome avoidance
  - Receiver: do not advertise small windows
  - Sender: Nagle's algorithm

## Overview

- TCP
  - Connection management
  - Flow control
  - When to transmit a segment
  - Adaptive retransmission
  - TCP options
    - Modern extensions

### TCP Retransmission

• A TCP sender retransmits a segment when it assumes that the segment has been lost

- How does a TCP sender detect a segment loss?
  - Timeout
  - Duplicate ACKs (later)

#### How to set the timer

• Challenge: RTT unknown and variable

- Too small
  - Results in unnecessary retransmissions

- Too large
  - Long waiting time

## Adaptive retransmission

• Estimate a RTO value based on round-trip time (RTT) measurements

- Implementation: one timer per connection
- Q: Retransmitted segments?



## Karn's Algorithm

Ambiguity



#### Solution: Karn's Algorithm:

 Don't update RTT on any segments that have been retransmitted

## Setting the RTO value

- Uses an exponential moving average (a low-pass filter) to estimate RTT (*srtt*) and variance of RTT (*rttvar*)
  - The influence of past samples decrease exponentially
- The RTT measurements are smoothed by the following estimators *srtt* and *rttvar*:

```
srtt_{n+1} = \alpha RTT + (1-\alpha) srtt_n

rttvar_{n+1} = \beta (|RTT - srtt_n|) + (1-\beta) rttvar_n

RTO_{n+1} = srtt_{n+1} + 4 rttvar_{n+1}
```

- The gains are set to  $\alpha = 1/4$  and  $\beta = 1/8$
- Negative power of 2 makes it efficient for implementation

## Setting the RTO value (cont'd)

- Initial value for RTO:
  - Sender should set the initial value of RTO to  $RTO_0 = 3$  seconds
- RTO calculation after first RTT measurements arrived

$$srtt_1 = RTT$$
  
 $rttvar_1 = RTT / 2$   
 $RTO_1 = srtt_1 + 4 rttvar_{n+1}$ 

• When a timeout occurs, the RTO value is doubled  $RTO_{n+1} = max (2 RTO_n, 64) seconds$ 

This is called an exponential backoff

## Overview

- TCP
  - Connection management
  - Flow control
  - When to transmit a segment
  - Adaptive retransmission
  - TCP options
    - Modern extensions

#### TCP header fields

- Options: (type, length, value)
- TCP hdrlen field tells how long options are



#### TCP header fields

#### Options:

- NOP is used to pad TCP header to multiples of 4 bytes
- Maximum Segment Size
- Window Scale Options
  - Increases the TCP window from 16 to 32 bits, i.e., the window size is interpreted differently
  - This option can only be used in the SYN segment (first segment) during connection establishment time

#### Timestamp Option

Can be used for roundtrip measurements

#### Modern TCP extensions

- Timestamp
- Window scaling factor
- Protection Against Wrapped Sequence Numbers (PAWS)
- Selective Acknowledgement (SACK)
- References
  - <u>http://www.ietf.org/rfc/rfc1323.txt</u>
  - http://www.ietf.org/rfc/rfc2018.txt

## Improving RTT estimate

- TCP timestamp option
  - Old design
    - One sample per RTT
    - Using host timer
- More samples to estimate
  - Timestamp option
    - Current TS, echo TS

#### Increase TCP window size



- 16-bit window size
- Maximum send window <= 65535B
- Suppose a RTT is 100ms
- Max TCP throughput = 65KB/100ms = 5Mbps
- Not good enough for modern high speed links!

#### Protecting against Wraparound

| Bandwidth                | Time until Wraparound |
|--------------------------|-----------------------|
| T1 (1.5 Mbps)            | 6.4 hours             |
| Ethernet (10 Mbps)       | 57 minutes            |
| T3 (45 Mbps)             | 13 minutes            |
| Fast Ethernet (100 Mbps) | 6 minutes             |
| OC-3 (155 Mbps)          | 4 minutes             |
| OC-12 (622 Mbps)         | 55 seconds            |
| OC-48 (2.5 Gbps)         | 14 seconds            |

Time until 32-bit sequence number space wraps around.

## Solution: Window scaling option

Kind = 3 Length = 3 Shift.cnt

Three bytes

- All windows are treated as 32-bit
- Negotiating shift.cnt in SYN packets
  - Ignore if SYN flag not set
- Sending TCP
  - Real available buffer >> self.shift.cnt →
     AdvertisedWindow
- Receiving TCP: stores other.shift.cnt
  - AdvertisedWindow << other.shift.cnt → Maximum</li>
     Sending Window

## Protect Against Wrapped Sequence Number

- 32-bit sequence number space
- Why sequence numbers may wrap around?
  - High speed link
  - On an OC-45 (2.5Gbps), it takes 14 seconds <</li>

- Solution: compare timestamps
  - Receiver keeps recent timestamp
  - Discard old timestamps

### Selective Acknowledgement

More when we discuss congestion control

• If there are holes, ack the contiguous received blocks to improve performance

### Summary

- Nitty-gritty details about TCP
  - Connection management
  - Flow control
  - When to transmit a segment
  - Adaptive retransmission
  - TCP options
  - Modern extensions
  - Next: Congestion Control
    - How does TCP keeps the pipe full?

#### Midterm statistics

#### **Overall Scores**

- MAXIMUM
  - -96.5
- MEAN
  - -79.79
- MEDIAN
  - -82.0
- STD DEV
  - -10.69



### Quiz Score

- Use mean to evaluate
- Take Quiz 1 82.021739
- Not Take Quiz 1 72.157895
- Take Quiz 2 82.025000
- Not Take Quiz 2 73.500000
- Either 1 or 2 81.800000
- Neither 1 nor 2 66.958333

# Survey results

• 1. Has the course met your expectations of an undergraduate networking class so far? If not, please explain the areas where the course has not met your expectations.



• 2. Are the lectures given a) at an appropriate speed; b) too fast; c) too slow? Please circle one answer.



• 3. Do you have any suggestion on how the course materials might be improved?





• 4. Do you have any suggestion on how the instructor might improve her teaching quality?



• 5. Do you have any suggestion on how the TA might improve his teaching quality?

5. Advice for TA

