CS 356: Introduction to Computer
Networks

Lecture 16: Transmission Control
Protocol (TCP)
Chap. 5.2

Xiaowei Yang
xwy@cs.duke.edu

Overview

 TCP
— Connection management
— Flow control
— When to transmit a segment
— Adaptive retransmission
— TCP options

* Modern extensions

Transmission Control Protocol

» Connection-oriented protocol

* Provides a reliable unicast end-to-end byte stream
over an unreliable internetwork

Byte Stream
Byte Stream)

TCP

TCP

DD‘
E][:I‘

[]
[]

IP Internetwork

TCP performance is critical to
business

BOUNCE CONVERSION; CART PAGE
RATE RATE SIZE VIEWS

200 ms — — —
S00ms 47% 19% — %
1000 ms 83% 35% 21% 3.4%

Source: http://www.webperformancetoday.com/2011/11/23/case-study-
slow-page-load-mobile-business-metrics/

http://www.webperformancetoday.com/2011/11/23/case-study-slow-page-load-
mobile-business-metrics/

Impact of site performance on overall site conversion rate....

Baseline - 1 in 2 site visits had response time > 4 seconds

* Sharp decline in conversion rate as average site load time increases from 1 to 4 seconds

* Overall average site load time is lower for the converted population (3.22 Seconds) than
the non-converted population (6.03 Seconds)

01 12 23 34 45 56 &7 78 &0 910 011 1192 1293 1394 1415 1S
Load Time (Seconds)

Page Performance & Site Conversion - Feb 2012 Walmart n

Source: http://www.webperformancetoday.com/2012/02/28/4-awesome-slides-
showing-how-page-speed-correlates-to-business-metrics-at-walmart-com/

http://www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-
how-page-speed-correlates-to-business-metrics-at-walmart-com/

Connection establishment/tear down

» Active/passive open

 Active/passive close, simultaneous close

* Two events
CLOSED :___“-~»~-..\\ tnggc.er.
N Active open/SYN transitions:
Passi ci
assive open ose Q _ Packet
LISTEN \‘-.,‘ \ arrival
o Vo — Application
) SYNISYN + ACV \ _SendSYN ' ,li operations
SYN.RCVD R STNAYN+ACK el 6y N I
ACK T\ /7 SYN+ACKACK » Half-close end
\ [. .
4 may still receive
CloselFIN ESTABLISHED data
B . .
] CloseFIN__/ __FINACK * Time Wait
FIN_WAIT_1 - ‘_ *| CLOSE_WAIT | Must wait
4. FINACK \ . — Must wai
%, - CloselFIN because ACK
£)
FIN_WAIT_2 ’4/{7 CLOSING LAST_ACK | may be lost
' I & [Ack Timeout after two [ack — The other end
'.\ sk : ' segment lifetimes | : .
— ~ TIME_WAIT ——={ CLOSED | may retransmit
FIN

Each square denotes a state. Each arc is a transition labeled with the event
that triggers the transition.
Half close: one end may close and the other end can still send

Questions to ponder: which sequence shows simultaneous close?

SYN_SENT

(active open)

ESTABLISHED

FIN_WAIT_1

(active close) |

FIN_WAIT_2

TIME_WAIT

TCP States in “Normal”

Connection Lifetime

SYN (SeqNo = x)

SYN gSegNo =Y, AckNo =X * 1)

(AckNo =y + 1)

FIN (SeqNo = m)

(AckNo =m+ 1)

<4

FIN (SeqNo=n)

AckNo = n+1

LISTEN

(passive open)

SYN_RCVD

ESTABLISHED

CLOSE_WAIT
(passive close)

LAST_ACK

CLOSED

2MSL Wait State

2MSL=2 * Maximum Segment Lifetime

2MSL Wait State = TIME_WAIT

* When TCP does an active close, and sends the final ACK, the connection must
stay in the TIME_WAIT state for twice the maximum segment lifetime.

» The socket pair (srcIP, srcPort, dstIP, dstPort) cannot be reused

* Why?
A FIN B o
* To prevent mixing packets
ACK from two different
FIN incarnations of the same
connection
Time_Wait
ACK

TCP is given a chance to resent the final ACK. (Server will timeout after
sending the FIN segment and resend the FIN)

Without waiting, FIN may close a wrong connection
The MSL is set to 2 minutes or 1 minute or 30 seconds.

Resetting Connections

 Resetting connections is done by setting the
RST flag

* When is the RST flag set?

— Connection request arrives and no server process is
waiting on the destination port

— Abort a connection causes the receiver to throw
away buffered data

— Receiver does not acknowledge the RST segment
— Abused in practice to block applications

10

Flow control

11

Sliding window revisited

Sending application

Receiving application

LastByteWritten

{

!

LastByteAcked

LastByteSent
(a)

—

e Invariants

Sender Window Size

/ TCP
LastByteRead

:

}

NextByteExpected LastByteRcvd

(b)L'J

Receiver Window Size

— LastByteAcked < LastByteSent

— LastByteSent < LastByteWritten

— LastByteRead < NextByteExpected

— NextByteExpected < LastByteRcvd + 1

* Limited sending buffer and Receiving buffer

12

TCP Flow Control

| IP header ITCP hndofl TCP data |
20bytes s 20 bytes T~

o 4 10 6 - 31

[SrcPort l DstPort

SequenceNum

Acknowledgment

0 | Flags | AdvertisedWindow <;j

Checksum UrgPtr

HdrLen

Options (variable)

Data

r__/\/\/\/\/\/\/\,’]
* Q: how does a receiver prevent a sender from
overrunning its buffer?

* A:use AdvertisedWindow

A TCP receiver uses the window size field to inform a sender its maximum
available receive buffer

Invariants for flow control

@ Receiving application
LastByteWritten Lt GstBWBRead =
1 114 ! [T 3
i ¥ [

LastByteAcked

* Receiver side:

(a)

LastByteSent

NextByteExpected LastByteRcvd
(b)

— LastByteRcvd — LastByteRead < MaxRcvBuf

— AdvertisedWindow = MaxRcvBuf —
((NextByteExpected - 1) — LastByteRead)

15

Invariants for flow control

Sending application Receiving application

LastByteWrir% Lt GstBWBRead =

¢ ; l | ¢ { { Fl 3
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

\ (a)) (b)_'_'

* Sender side:

EffectiveWindow = AdvertisedWindow —
(LastByteSent — LastByteAcked)

— LastByteWritten — LastByteAcked < MaxSndBuf
» Sender process would be blocked if send buffer is full

16

Window probes

 What if a receiver advertises a window size of
zero?

— Problem: Receiver can’t send more ACKs as sender
stops sending more data

» Design choices
— Receivers send duplicate ACKs when window opens
— Sender sends periodic 1 byte probes ¢/

* Why?

— Keeping the receive side simple - Smart sender/dumb
receiver

18

When to send a segment?

» App writes bytes to a TCP socket
» TCP decides when to send a segment

» Design choices when window opens:
— Send whenever data available

— Send when collected Maximum Segment Size data ¢/
* Why?
* More efficient

19

Push flag

» What if App is interactive, e.g. ssh?
— App sets the PUSH flag
— Flush the sent buffer

20

Silly Window Syndrome

* Now considers flow control
— Window opens, but does not have MSS bytes

» Design choice 1: send all it has

 E.g., sender sends 1 byte, receiver acks 1, acks opens
the window by 1 byte, sender sends another 1 byte, and
sO on

21

Silly Window Syndrome

[=
/m

Sender Receiver

b s
110

If you think of a TCP stream as a conveyer belt with “full” containers (data
segments) going in one direction and empty containers (ACKs) going in the
reverse direction, then MSS-sized segments correspond to large containers
and 1-byte segments correspond to very small containers.

If the sender aggressively fills an empty container as soon as it arrives, then
any small container introduced into the system remains in the system
indefinitely.

That is, it is immediately filled and emptied at each end, and never coalesced
with adjacent containers to create larger containers.

23

How to avoid Silly Window
Syndrome

» Receiver side

— Do not advertise small window sizes
— Min (MSS, MaxRecvBuf/2)

 Sender side
— Wait until it has a large segment to send
— Q: How long should a sender wait?

24

Sender-Side Silly Window
Syndrome avoidance

. ? 1 hm When app has data to send
Nagle S AlgOI‘lt if data and window >= MSS

— Self-clocking elsZend a full segment
if there is unACKed data

buffer new data until ACK

¢ InteraCtive app lications elsesend all the new data now
may turn off Nagle’s
algorithm using the
TCP_NODELAY socket
option

If not enough data, sender waits for a virtual timer to time out and
transmits

Virtual timer is driven by a returning ACK (roughly a RTT time)

25

TCP window management
summary

* Receiver uses AdvertisedWindow for flow
control

» Sender sends probes when AdvertisedWindow
reaches zero

« Silly Window Syndrome avoidance
— Receiver: do not advertise small windows
— Sender: Nagle’s algorithm

26

Overview

 TCP
— Connection management
— Flow control
— When to transmit a segment
— Adaptive retransmission
— TCP options

* Modern extensions

27

TCP Retransmission

« A TCP sender retransmits a segment when it
assumes that the segment has been lost

* How does a TCP sender detect a segment
loss?

— Timeout
— Duplicate ACKs (later)

28

How to set the timer

* Challenge: RTT unknown and variable

* Too small
— Results in unnecessary retransmissions

* Too large
— Long waiting time

29

Adaptive retransmission

» Estimate a RTO value based on round-trip time
(RTT) measurements

* Implementation: one 2 __Segment 1
1 1 CK for Segment 1
fimer per connection 2| | Ackforsegmenti——

Segment 2
Segment 3

. Q: Retransmitted 8 >,W<
segments? A Segment
ACK for Segment 4

ACK for Se! ment 5
.

N

e L1y

Each TCP connection measures the time difference between the transmission
of a segment and the receipt of the corresponding ACK

Figure on the right shows three RTT measurements

30

Karn’s Algorithm

* Ambiguity * Solution: Karn’s
Algorithm:
segment — Don’t update RTT on
Timeout| retransmigg; any segments that have
2 —Sfseoment been retransmitted
oE
-~ AG\‘

If an ACK for a retransmitted segment is received, the sender cannot tell if the
ACK belongs to the original or the retransmission.

-> RTT measurements is ambiguous in this case

Setting the RTO value

« Uses an exponential moving average (a low-pass
filter) to estimate RTT (sr¢f) and variance of RTT
(rttvar)

— The influence of past samples decrease exponentially

* The RTT measurements are smoothed by the
following estimators srtt and retvar:
srtt,,, = a RTT + (I- o) srtt,
rttvar,,; = B (| RTT —srtt, |) + (1I- B) rttvar,
RTO,., = srtt, ; + 4 rttvar,

— The gains are set to & =1/4 and S =1/8
— Negative power of 2 makes it efficient for implementation

32

Setting the RTO value (cont’d)

* Initial value for RTO:

— Sender should set the initial value of RTO to
RTO, = 3 seconds

* RTO calculation after first RTT measurements arrived

srtt; = RTT
rttvar; = RTT /2

RTO,; = srtt; + 4 rttvar,

* When a timeout occurs , the RTO value 1s doubled
RTO, ., =max (2 RTO,, 64) seconds

This is called an exponential backoff

http://www.ietf.org/rfc/rfc2988.txt

33

Overview

 TCP
— Connection management
— Flow control
— When to transmit a segment
— Adaptive retransmission
— TCP options

* Modern extensions

34

End of
Options

NOP
(no operation)

Maximum
Segment Size

Window Scale
Factor

Timestamp

TCP header fields
* Options: (type, length, value)
» TCP hdrlen field tells how long options are

kind=0
1 byte
kind=1
1 byte
kind=2 | len=4 se';:‘n";’:t“s’?ze
1 byte 1 byte 2 bytes
kind=3 len=3 shift count
1 byte 1 byte 1 byte
kind=8 len=10 timestamp value timestamp echo reply
1 byte 1 byte 4 bytes 4 bytes

35

TCP header fields

* Options:
— NOP is used to pad TCP header to multiples of 4
bytes
— Maximum Segment Size
— Window Scale Options

* Increases the TCP window from 16 to 32 bits, i.e., the
window size is interpreted differently

* This option can only be used in the SYN segment (first
segment) during connection establishment time

— Timestamp Option
* Can be used for roundtrip measurements

36

Modern TCP extensions

Timestamp

Window scaling factor

Protection Against Wrapped Sequence Numbers (PAWS)
Selective Acknowledgement (SACK)

References
— http://www.ietf.org/rfc/rfc1323 txt
— http://www.ietf.org/rfc/rfc2018.txt

37

Improving RTT estimate

» TCP timestamp option

— Old design

* One sample per RTT
* Using host timer

* More samples to estimate
— Timestamp option
* Current TS, echo TS

38

Increase TCP window size

[IP header IICP h-ad-r] TCP data l
S bytes ¢ 20 bytes o=

16-bit window size

Maximum send window <= 65535B

Suppose a RTT is 100ms

Max TCP throughput = 65KB/100ms = SMbps
Not good enough for modern high speed links!

39

Protecting against Wraparound

Bandwidth Time until Wraparound
T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

Fast Ethernet (100 Mbps) | 6 minutes

OC-3 (155 Mbps) 4 minutes
0C-12 (622 Mbps) 55 seconds
0C-48 (2.5 Gbps) 14 seconds

Time until 32-bit sequence number space wraps around.

Kind =3 | Length =3 | Shift.cnt

— Ignore if SYN flag not set
Sending TCP

AdvertisedWindow

Sending Window

All windows are treated as 32-bit
Negotiating shift.cnt in SYN packets

— Real available buffer >> self.shift.cnt =

Receiving TCP: stores other.shift.cnt
— AdvertisedWindow << other.shift.cnt 2 Maximum

Solution: Window scaling option

Three bytes

All windows are treated as 32-bit stored in connection control block

is negotiated during connection setup, carried

41

Protect Against Wrapped Sequence
Number

 32-bit sequence number space

» Why sequence numbers may wrap around?
— High speed link

— On an OC-45 (2.5Gbps), it takes 14 seconds <
2MSL

 Solution: compare timestamps
— Receiver keeps recent timestamp
— Discard old timestamps

42

Selective Acknowledgement

* More when we discuss congestion control

« If there are holes, ack the contiguous received
blocks to improve performance

43

Summary

* Nitty-gritty details about TCP
— Connection management
— Flow control
— When to transmit a segment
— Adaptive retransmission
— TCP options
— Modern extensions

— Next: Congestion Control
» How does TCP keeps the pipe full?

44

