
CS 356: Computer Network Architectures
Lecture 20: Congestion Avoidance

Chap. 6.4 and related papers

Xiaowei Yang
xwy@cs.duke.edu

TCP Congestion Control

History
•  The original TCP/IP design did not include congestion

control and avoidance
–  Receiver uses advertised window to do flow control
–  No exponential backoff after a timeout

•  It led to congestion collapse in October 1986
–  The NSFnet phase-I backbone dropped three orders of

magnitude from its capacity of 32 kbit/s to 40 bit/s, and
continued until end nodes started implementing Van
Jacobson's congestion control between 1987 and 1988.

–  TCP retransmits too early, wasting the network’s
bandwidth to retransmit packets already in transit and
reducing useful throughput (goodput)

Design Goals

•  Congestion avoidance: making the
system operate around the knee to
obtain low latency and high
throughput

•  Congestion control: making the
system operate left to the cliff to
avoid congestion collapse

•  Congestion avoidance:
making the system operate
around the knee to obtain
low latency and high
throughput

•  Congestion control: making
the system operate left to the
cliff to avoid congestion
collapse

Key Improvements

•  RTT variance estimate
– Old design: RTTn+1 = α RTT + (1- α) RTTn

–  RTO = β RTTn+1

•  Exponential backoff
•  Slow-start
•  Dynamic window sizing
•  Fast retransmit

Challenge

•  Send at the “right” speed
– Fast enough to keep the pipe full
– But not to overrun the “pipe”
– Share nicely with other senders

Key insight: packet conservation
principle and self-clocking

•  When pipe is full, the speed of ACK returns
equals to the speed new packets should be
injected into the network

Solution: Dynamic window sizing
•  Sending speed: SWS / RTT

•  à Adjusting SWS based on available bandwidth

•  The sender has two internal parameters:
–  Congestion Window (cwnd)
–  Slow-start threshold Value (ssthresh)

•  SWS is set to the minimum of (cwnd, receiver
advertised win)

Two Modes of Congestion Control
1.  Probing for the available bandwidth

–  slow start (cwnd < ssthresh)

2.  Avoid overloading the network
–  congestion avoidance (cwnd >= ssthresh)

Slow Start
•  Initial value: Set cwnd = 1 MSS

–  Modern TCP implementation may set initial cwnd to larger
than 1 (e.g. 2, 4, or 10)

•  When receiving an ACK, cwnd+= 1 MSS

–  If an ACK acknowledges two segments, cwnd is
still increased by only 1 segment.

– Even if ACK acknowledges a segment that is
smaller than MSS bytes long, cwnd is increased by
1.

•  Question: how can you accelerate your TCP download?

Congestion Avoidance

•  If cwnd >= ssthresh then each time an ACK is
received, increment cwnd as follows:

•  cwnd += MSS * (MSS / cwnd) (cwnd measured in
bytes)

•  So cwnd is increased by one MSS only if all
cwnd/MSS segments have been acknowledged.

Example of
Slow Start/Congestion Avoidance

Assume ssthresh = 8 MSS cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

cwnd = 10

0
2
4
6
8
10
12
14

t=0 t=2 t=4 t=6
Roundtrip times

C
w

nd
 (i

n
se

gm
en

ts
)

ssthresh

Congestion detection

•  What would happen if a sender keeps
increasing cwnd?
– Packet loss

•  TCP uses packet loss as a congestion signal

•  Loss detection
1.  Receipt of a duplicate ACK (cumulative ACK)
2.  Timeout of a retransmission timer

Reaction to Congestion

•  Reduce cwnd

•  Timeout: severe congestion
–  cwnd is reset to one MSS:

cwnd = 1 MSS

–  ssthresh is set to half of the current size of the
congestion window:

ssthressh = cwnd / 2

–  entering slow-start

Reaction to Congestion

•  Duplicate ACKs: not so congested (why?)
•  Fast retransmit

– Three duplicate ACKs indicate a packet loss
– Retransmit without timeout

16

Duplicate ACK example
1K SeqNo=0

AckNo=1024

AckNo=1024

1K SeqNo=1024

SeqNo=20481K

AckNo=1024

SeqNo=30721K

SeqNo=40961K

1. duplicate

2. duplicate

AckNo=1024

SeqNo=10241K

SeqNo=51201K

3. duplicate

Reaction to congestion: Fast Recovery

•  Avoiding slow start
– ssthresh = cwnd/2
– cwnd = cwnd+3MSS
–  Increase cwnd by one MSS for each additional

duplicate ACK

•  When ACK arrives that acknowledges “new
data,” set:

 cwnd=ssthresh
 enter congestion avoidance

Flavors of TCP Congestion Control
•  TCP Tahoe (1988, FreeBSD 4.3 Tahoe)

–  Slow Start
–  Congestion Avoidance
–  Fast Retransmit

•  TCP Reno (1990, FreeBSD 4.3 Reno)
–  Fast Recovery
–  Modern TCP implementation

•  New Reno (1996)

•  SACK (1996)

TCP Tahoe

TCP Reno

CA SS

Fast retransmission/fast recovery

TCP saw tooth

TCP summary

•  Connection management
•  Flow control
•  When to transmit a segment
•  Adaptive retransmission
•  TCP options
•  Modern extensions
•  Congestion Control

Theory: why does it work?

Why does it work? [Chiu-Jain]

–  A feedback control system
–  The network uses feedback y to adjust users’ load ∑x_i

Goals of Congestion Avoidance
–  Efficiency: the closeness of the total load on the resource ot its knee
–  Fairness:

•  When all x_i’s are equal, F(x) = 1
•  When all x_i’s are zero but x_j = 1, F(x) = 1/n

–  Distributedness
•  A centralized scheme requires complete knowledge of the state of the

system
–  Convergence

•  The system approach the goal state from any starting state

Metrics to measure convergence

•  Responsiveness
•  Smoothness

Model the system as a linear control
system

•  Four sample types of controls
•  AIAD, AIMD, MIAD, MIMD

–  A: additive
–  M: multiplicative
–  I: increase
–  D: decrease

Phase plot

x1

x2

29

The Sawtooth behavior of TCP

•  For every ACK received
–  Cwnd += 1/cwnd *MSS

•  For every packet lost
–  Cwnd /= 2

RTT

Cwnd

30

 TCP congestion control is AIMD

•  Problems:
–  Each source has to probe for its bandwidth
–  Congestion occurs first before TCP backs off
–  Unfair: long RTT flows obtain smaller bandwidth

 shares

RTT

Cwnd

31

Macroscopic behavior of TCP

pRTT
MSS
•

•5.1
•  Throughput is inversely proportional to RTT:

•  In a steady state, total packets sent in one sawtooth cycle:
–  S = w + (w+1) + … (w+w) = 3/2 w2

•  the maximum window size is determined by the loss rate
–  1/S = p
–  w =

•  The length of one cycle: w * RTT
•  Average throughput: 3/2 w * MSS / RTT

1
1.5p

TCP Cubic

•  CUBIC: a new TCP-friendly high-speed TCP
variant by S. HaNorth, I. Rhee, and L. Xu

•  Implemented in Linux kernel and Windows 10

Summary

•  TCP congestion control
•  Why it works?
•  The macroscopic behavior of TCP
•  TCP Cubic

