CS 356: Computer Network Architectures Lecture 20: Congestion Avoidance Chap. 6.4 and related papers

Xiaowei Yang xwy@cs.duke.edu

TCP Congestion Control

History

- The original TCP/IP design did not include congestion control and avoidance
 - Receiver uses advertised window to do flow control
 - No exponential backoff after a timeout
- It led to congestion collapse in October 1986
 - The NSFnet phase-I backbone dropped three orders of magnitude from its capacity of 32 kbit/s to 40 bit/s, and continued until end nodes started implementing Van Jacobson's congestion control between 1987 and 1988.
 - TCP retransmits too early, wasting the network's bandwidth to retransmit packets already in transit and reducing useful throughput (goodput)

Design Goals

- Congestion avoidance: making the system operate around the knee to obtain low latency and high throughput
- Congestion control: making the system operate left to the cliff to avoid congestion collapse

Key Improvements

- RTT variance estimate
 - Old design: $RTT_{n+1} = \alpha RTT + (1 \alpha) RTT_n$
 - $RTO = \beta RTT_{n+1}$
- Exponential backoff
- Slow-start
- Dynamic window sizing
- Fast retransmit

Challenge

- Send at the "right" speed
 - Fast enough to keep the pipe full
 - But not to overrun the "pipe"
 - Share nicely with other senders

Key insight: packet conservation principle and self-clocking

• When pipe is full, the speed of ACK returns equals to the speed new packets should be injected into the network

Solution: Dynamic window sizing

- Sending speed: SWS / RTT
- → Adjusting SWS based on available bandwidth
- The sender has two *internal* parameters:
 - Congestion Window (cwnd)
 - Slow-start threshold Value (ssthresh)
- SWS is set to the minimum of (cwnd, receiver advertised win)

Two Modes of Congestion Control

- 1. Probing for the available bandwidth
 - slow start (cwnd < ssthresh)</p>
- 2. Avoid overloading the network
 - congestion avoidance (cwnd >= ssthresh)

Slow Start

- Initial value: Set cwnd = 1 MSS
 - Modern TCP implementation may set initial cwnd to larger than 1 (e.g. 2, 4, or 10)
- When receiving an ACK, cwnd+= 1 MSS
 - If an ACK acknowledges two segments, cwnd is still increased by only 1 segment.
 - Even if ACK acknowledges a segment that is smaller than MSS bytes long, cwnd is increased by
 1.
 - Question: how can you accelerate your TCP download?

Congestion Avoidance

- If cwnd >= ssthresh then each time an ACK is received, increment cwnd as follows:
 - cwnd += MSS * (MSS / cwnd) (cwnd measured in bytes)
- So *cwnd* is increased by one MSS only if all *cwnd*/MSS segments have been acknowledged.

Example of Slow Start/Congestion Avoidance

Assume ssthresh = 8 MSS

Congestion detection

- What would happen if a sender keeps increasing cwnd?
 - Packet loss

• TCP uses packet loss as a congestion signal

- Loss detection
 - 1. Receipt of a duplicate ACK (cumulative ACK)
 - 2. Timeout of a retransmission timer

Reaction to Congestion

Reduce cwnd

- Timeout: severe congestion
 - cwnd is reset to one MSS:

```
cwnd = 1 MSS
```

 ssthresh is set to half of the current size of the congestion window:

```
ssthressh = cwnd / 2
```

entering slow-start

Reaction to Congestion

- Duplicate ACKs: not so congested (why?)
- Fast retransmit
 - Three duplicate ACKs indicate a packet loss
 - Retransmit without timeout

Duplicate ACK example

Reaction to congestion: Fast Recovery

- Avoiding slow start
 - ssthresh = cwnd/2
 - cwnd = cwnd + 3MSS
 - Increase cwnd by one MSS for each additional duplicate ACK
- When ACK arrives that acknowledges "new data," set:
 - cwnd=ssthresh enter congestion avoidance

Flavors of TCP Congestion Control

- TCP Tahoe (1988, FreeBSD 4.3 Tahoe)
 - Slow Start
 - Congestion Avoidance
 - Fast Retransmit
- **TCP Reno** (1990, FreeBSD 4.3 Reno)
 - Fast Recovery
 - Modern TCP implementation
- New Reno (1996)
- **SACK** (1996)

TCP Tahoe

TCP summary

- Connection management
- Flow control
- When to transmit a segment
- Adaptive retransmission
- TCP options
- Modern extensions
- Congestion Control

Theory: why does it work?

Why does it work? [Chiu-Jain]

- A feedback control system
- The network uses feedback y to adjust users' load $\sum x_i$

Goals of Congestion Avoidance

- Efficiency: the closeness of the total load on the resource ot its knee
- Fairness:

$$F(x) = \frac{\left(\sum x_i\right)^2}{n\left(\sum x_i^2\right)}.$$

- When all x i's are equal, F(x) = 1
- When all x i's are zero but x j = 1, F(x) = 1/n
- Distributedness
 - A centralized scheme requires complete knowledge of the state of the system
- Convergence
 - The system approach the goal state from any starting state

Metrics to measure convergence

Fig. 3. Responsiveness and smoothness.

- Responsiveness
- Smoothness

Model the system as a linear control system

$$x_i(t+1)$$

$$= \begin{cases} a_1 + b_1 x_i(t) & \text{if } y(t) = 0 \Rightarrow \text{Increase,} \\ a_D + b_D x_i(t) & \text{if } y(t) = 1 \Rightarrow \text{Decrease.} \end{cases}$$

- Four sample types of controls
- AIAD, AIMD, MIAD, MIMD
 - A: additive
 - M: multiplicative
 - I: increase
 - D: decrease

Phase plot

The Sawtooth behavior of TCP

- For every ACK received
 - Cwnd += 1/cwnd *MSS
- For every packet lost
 - Cwnd $\neq 2$

TCP congestion control is AIMD

Problems:

- Each source has to probe for its bandwidth
- Congestion occurs first before TCP backs off
- Unfair: long RTT flows obtain smaller bandwidth shares

Macroscopic behavior of TCP

• Throughput is inversely proportional to RTT:

$$\frac{\sqrt{1.5} \cdot MSS}{RTT \cdot \sqrt{p}}$$

• In a steady state, total packets sent in one sawtooth cycle:

$$- S = w + (w+1) + \dots (w+w) = 3/2 w^2$$

- the maximum window size is determined by the loss rate
 - 1/S = p $w = \frac{1}{\sqrt{1.5p}}$
- The length of one cycle: w * RTT
- Average throughput: 3/2 w * MSS / RTT

TCP Cubic

(b) CUBIC window growth function.

$$W(t) = C(t - K)^3 + W_{max}$$

$$K = \sqrt[3]{\frac{W_{max}\beta}{C}}$$

- CUBIC: a new TCP-friendly high-speed TCP variant by S. HaNorth, I. Rhee, and L. Xu
- Implemented in Linux kernel and Windows 10

Summary

- TCP congestion control
- Why it works?
- The macroscopic behavior of TCP
- TCP Cubic