CS 356: Computer Network Architectures
Lecture 20: Congestion Avoidance
Chap. 6.4 and related papers

Xiaowei Yang
xwy@cs.duke.edu

TCP Congestion Control

History

* The original TCP/IP design did not include congestion
control and avoidance
— Receiver uses advertised window to do flow control
— No exponential backoff after a timeout

* It led to congestion collapse in October 1986

— The NSFnet phase-I backbone dropped three orders of
magnitude from its capacity of 32 kbit/s to 40 bit/s, and
continued until end nodes started implementing Van
Jacobson's congestion control between 1987 and 1988.

— TCP retransmits too early, wasting the network’s
bandwidth to retransmit packets already in transit and
reducing useful throughput (goodput)

Design Goals

» Congestion avoidance:
making the system operate
around the knee to obtain
low latency and high
throughput

Throu-
ghput

Load

» Congestion control: making
the system operate left to the
cliff to avoid congestion
collapse

Resp
onse
time

Key Improvements

RTT variance estimate
— Old design: RTT,,; = a RTT + (I-) RTT,
- RTO = B RTTn+1

Exponential backoff
Slow-start

Dynamic window sizing
Fast retransmit

Challenge

» Send at the “right” speed
— Fast enough to keep the pipe full
— But not to overrun the “pipe”
— Share nicely with other senders

Key insight: packet conservation
principle and self-clocking

1 1

CAl=="11)

Sender Receiver

T N =T 1
/ AN

- P

= Ap—i

A A

* When pipe is full, the speed of ACK returns
equals to the speed new packets should be
injected into the network

Solution: Dynamic window sizing
» Sending speed: SWS /RTT
* > Adjusting SWS based on available bandwidth

» The sender has two infernal parameters:

— Congestion Window (cwnd)
— Slow-start threshold Value (ssthresh)

* SWS is set to the minimum of (cwnd, receiver
advertised win)

Two Modes of Congestion Control

1. Probing for the available bandwidth

— slow start (cwnd < ssthresh)

2. Avoid overloading the network
— congestion avoidance (cwnd >= ssthresh)

Slow Start

* Initial value: Set cwnd =1 MSS

— Modern TCP implementation may set initial cwnd to larger
than 1 (e.g. 2, 4, or 10)

* When receiving an ACK, cwnd+= 1 MSS

— If an ACK acknowledges two segments, cwnd is
still increased by only 1 segment.

— Even if ACK acknowledges a segment that is
smaller than MSS bytes long, cwnd is increased by
1.

* Question: how can you accelerate your TCP download?

Note: Unit is a segment size. TCP actually is
based on bytes and increments by 1 MSS
(maximum segment size). To increase, one
may ack every byte rather than a full sized
segment. But this attack has been fixed.

Increasing TCP's Initial Window. doi:10.17487/RFC3390. RFC 3390.

Corbet, Jonathan. "Increasing the TCP initial congestion window". LWN.
Retrieved 10 October 2012.

10

https://tools.ietf.org/html/rfc3390
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.17487%2FRFC3390
https://lwn.net/Articles/427104/

Congestion Avoidance

e If cwnd >= ssthresh then each time an ACK is
received, increment cwnd as follows:

* cwnd += MSS * (MSS / cwnd) (cwnd measured in
bytes)

* So cwnd 1s increased by one MSS only if all

cwnd/MSS segments have been acknowledged.

11

Example of
Slow Start/Congestion Avoidance

Assume ssthresh = 8 MSS =7 [————

cwnd =2]

cwnd =4

cwnd =8

ssthresh /_,r"/ —— —
/' e ——— |

cwnd =9

Cwnd (in segments)

- - -
O N A OO®ON M
] T T
[
|
[|
l‘ "
|
[
[
|
|
[
||l
[l
|
1

N Al AG —

Roundtrip times cwnd = 10

Congestion detection

» What would happen if a sender keeps
increasing cwnd?

— Packet loss

» TCP uses packet loss as a congestion signal

» Loss detection
1. Receipt of a duplicate ACK (cumulative ACK)

2. Timeout of a retransmission timer

13

Reaction to Congestion

* Reduce cwnd

» Timeout: severe congestion
— cwnd is reset to one MSS:
cwnd = 1 MSS

— ssthresh is set to half of the current size of the
congestion window:
ssthressh = cwnd / 2

— entering slow-start

14

Reaction to Congestion

* Duplicate ACKs: not so congested (why?)

* Fast retransmit
— Three duplicate ACKSs indicate a packet loss
— Retransmit without timeout

Answer to why: because some packets arrived at the destination to trigger the
duplicate acks. So the network is not congested enough to lose all packets in a
window.

Duplicate ACK example

o]
GErIY

m SeqNo=2048

1. duplicate AckNo=1024
ﬂ SeqNo=3072

16

Reaction to congestion: Fast Recovery

* Avoiding slow start
— ssthresh = cwnd/2
—cwnd = cwnd+3MSS

— Increase cwnd by one MSS for each additional
duplicate ACK

When ACK arrives that acknowledges “new
data,” set:

cwnd=ssthresh
enter congestion avoidance

17

Flavors of TCP Congestion Control

* TCP Tahoe (1988, FreeBSD 4.3 Tahoe)
— Slow Start
— Congestion Avoidance
— Fast Retransmit

* TCP Reno (1990, FreeBSD 4.3 Reno)

— Fast Recovery
— Modern TCP implementation

* New Reno (1996)

. SACK (1996)

18

TCP Tahoe

15 ﬂ
10p
]
N
)
2 4
(o]
he)
£
3
5. \/ j
00 5 10 15

time (seconds)

TCP Reno

TCP saw tooth

10p

window size

10 1 20
time (seconds)

Fast retransmission/fast recovery

20

nam: /home/will/workspace/ns2-scri = 0 X

21

TCP summary

Connection management
Flow control

When to transmit a segment
Adaptive retransmission
TCP options

Modern extensions
Congestion Control

22

Theory: why does it work?

23

Why does it work? [Chiu-Jain]

User 1 \Q&

—>! User2 "’@” x> Xgoat ¢ P
: / Network
™

Xn

User n

— A feedback control system
— The network uses feedback y to adjust users’ load 2x_i

24

Goals of Congestion Avoidance

— Efficiency: the closeness of the total load on the resource ot its knee
— Faimness:

(Ex)"
n(Ex7)

F(x)=

* When all x_i’s are equal, F(x) =1
* Whenall x_i’sare zerobutx j=1,F(x)=1/n

— Distributedness

» A centralized scheme requires complete knowledge of the state of the
system

— Convergence
 The system approach the goal state from any starting state

25

Metrics to measure convergence

Goal

Total
load on
the
network

L) (’Raesponsiveness
. I}
L ——-J-—-__/__ Smoothness
¥
Time » Responsiveness

Fig. 3. Responsiveness and smoothness.

* Smoothness

26

Model the system as a linear control
system

x,(t+1)

[ay+byx,(¢) if p(t)=0=Increase,

ap+bpx,(1) if y(r) =1= Decrease.

» Four sample types of controls

 AIAD, AIMD, MIAD, MIMD
— A: additive
— M: multiplicative
— I: increase
— D: decrease

27

X2

Phase plot

X1

1. efficiency line

2. fairness line
AIMD

Cwnd

The Sawtooth behavior of TCP

* For every ACK received

— Cwnd += 1/cwnd *MSS

» For every packet lost

— Cwnd /=2

RTT

29

29

TCP congestion control 1s AIMD

Cwnd

RTT
* Problems:
— Each source has to probe for its bandwidth
— Congestion occurs first before TCP backs off

— Unfair: long RTT flows obtain smaller bandwidth
shares

30

30

Macroscopic behavior of TCP
Throughput is inversely proportional to RTT:
V1.5 e MSS

RTTe.[p

In a steady state, total packets sent in one sawtooth cycle:
- S=w+(wt+l)+ ... (wtw) =3/2 w?

the maximum window size is determined by the loss rate
- 1/8= p1

- YT s,

The length of one cycle: w * RTT
Average throughput: 3/2 w * MSS/RTT

31

31

'TCP Cubic

_Steady State Behavior

Wmax

o g il el

Max Probmg

(b) CUBIC window growth function.

f leazq
W(t) = C(t — K)s + Whaz K = \ TL

« CUBIC: a new TCP-friendly high-speed TCP
variant by S. HaNorth, I. Rhee, and L. Xu

» Implemented in Linux kernel and Windows 10

http://delivery.acm.org/10.1145/1410000/1400105/p64-
ha.pdf?ip=152.3.43.28&id=1400105&acc=ACTIVE%20SERVICE&key=777711
6298C9657D%2E18C4EEC63BFE39A6%2E4D4702BO0C3E38B35%2E4D470
2BOC3E38B35&_ acm__=1522697537_aad5e7bd094a30540605e9f0185614
43

https://tools.ietf.org/id/draft-ietf-tcpm-cubic-04.html

32

https://tools.ietf.org/id/draft-ietf-tcpm-cubic-04.html

Summary

TCP congestion control

Why it works?

The macroscopic behavior of TCP

TCP Cubic

33

