
CS 356: Computer Network Architectures
Lecture 21: Queuing Disciplines and

Congestion Avoidance
Chap. 6.4 and related papers

Xiaowei Yang
xwy@cs.duke.edu

2

Overview
•  Resource allocation framework

•  Congestion Avoidance

•  Queuing Disciplines

Resource allocation

•  A fundamental question of networking: who
gets to send at what speed?

 Resource allocation vs Congestion
control

•  Resource allocation: The process by which
network elements try to meet the competing
demands that applications have for network
resources
– Bandwidth and buffer space

•  Congestion control: efforts made only by
network nodes to prevent or respond to
overload conditions

Network Model

•  Packet switched

•  Connectionless flows
– Flow: a sequence o packets sent between a source

host and a destination host

•  Service model
– Best-effort
– Quality of Service

Design Space for resource
allocation

•  Router-centric vs. Host-centric

•  Reservation-based vs. Feedback-based

•  Window-based vs. Rate-based

Evaluation criteria

•  Performance and Fairness
– Performance: high throughput, low latency

•  Power = throughput/Delay

– Fairness: Chiu-Jain fairness index

Queuing disciplines for resource
allocation

Queuing mechanisms
•  Router-enforced resource allocation

– Scheduling policy: which packet gets sent
– Drop policy: which packet gets dropped

•  Default
– First come first serve (FIFO) with DropTail

Limitations of FIFO with DropTail

•  Unfair
– TCP flows reduce sending rates
– Non-TCP may not

Priority queuing

•  Mark packets with priority bits
•  Multiple FIFO queues, each for one priority
•  Transmit packets out of highest priority queues

•  Limitation: may starve low priority packets
– Users cannot set their priority bits
– Routing messages get high priority

Fair Queuing

Fair Queuing Motivation

•  End-to-end congestion control + FIFO queue
has limitations
– What if sources mis-behave?

•  Approach 2:
– Fair Queuing: a queuing algorithm that aims to

“fairly” allocate buffer, bandwidth, latency among
competing users

Outline

•  What is fair?
•  Weighted Fair Queuing
•  Deficit Round Robin

What is fair?

•  Fair to whom?
– Source, Receiver, Process
– Flow / conversation: Src and Dst pair

•  Flow is considered the best tradeoff

•  Maximize fairness index?
–  Fairness = (Σxi)2/n(Σxi

2) 0<fairness<1

•  What if a flow uses a long path?

•  Tricky, no satisfactory solution, policy vs
mechanism

One definition: Max-min fairness
•  Many fair queuing algorithms aim to achieve this

definition of fairness

•  Informally
–  Allocate user with “small” demand what it wants, evenly divide

unused resources to “big” users

•  Formally
–  1. No user receives more than its request
–  2. No other allocation satisfies 1 and has a higher minimum

allocation
•  Users that have higher requests and share the same bottleneck link

have equal shares
–  Remove the minimal user and reduce the total resource

accordingly, 2 recursively holds

Max-min example
•  Assume sources 1..n, with resource demands X1..Xn in an

ascending order
•  Assume channel capacity C.

–  Give C/n to X1; if this is more than X1 wants, divide excess (C/n -
X1) to other sources: each gets C/n + (C/n - X1)/(n-1)

–  If this is larger than what X2 wants, repeat process

•  A numerical example
–  Bottleneck link bandwidth 10Mbps
–  Three users: r1: 1Mbps, r2: 6Mbps, r3: 8Mbps
–  Allocation results:

•  r1: 1Mbps, r2=r3: 4.5Mbps

Design of weighted fair queuing
•  Resources managed by a queuing algorithm

– Bandwidth: Which packets get
transmitted

– Promptness: When do packets get
transmitted

– Buffer: Which packets are discarded
– Examples: FIFO

• The order of arrival determines all
three quantities

Design goals
•  Max-min fair
•  Work conserving: link’s not idle if there is work to do
•  Isolate misbehaving sources
•  Has some control over promptness

–  E.g., lower delay for sources using less than their full share of
bandwidth

–  Continuity
•  On Average does not depend discontinuously on a packet’s time of arrival
•  Not blocked if no packet arrives

A simple fair queuing algorithm

•  Nagle’s proposal: separate queues for packets from each
individual source

•  Different queues are serviced in a round-robin manner
•  Limitations

–  Is it fair?
–  What if a packet arrives right after one departs?

21

Implementing max-min Fairness

•  Generalized processor sharing
–  Fluid fairness
–  Bitwise round robin among all queues

•  WFQ:
–  Emulate this reference system in a packetized system
–  Challenges: bits are bundled into packets. Simple round robin

scheduling does not emulate bit- by-bit round robin

Emulating Bit-by-Bit round robin

•  Define a virtual clock: the round number
R(t) as the number of rounds made in a bit-
by-bit round-robin service discipline up to
time t

•  A packet with size P whose first bit
serviced at round R(t0) will finish at round:
–  R(t) = R(t0) + P

•  Schedule which packet gets serviced based
on the finish round number

Example

F = 10

F = 3 F=7

F = 5

Compute finish times

•  Arrival time of packet i from flow α: ti
α

•  Pacet size: Pi
α

•  Si
α be the round number when the packet starts

service
•  Fi

α be the finish round number
•  Fi

α = Si
α + Pi

α
•  Si

α = Max (Fi-1
α, R(ti

α))

Compute R(t) can be complicated

•  Single flow: clock ticks when a bit is
transmitted. For packet i:
– Round number ≤ Arrival time Ai
– Fi = Si+Pi = max (Fi-1, Ai) + Pi

•  Multiple flows: clock ticks when a bit from all
active flows is transmitted
– When the number of active flows vary, clock ticks

at different speed: ∂ R/∂ t = ¹/Nac(t)

An example

•  Two flows, unit link speed 1 bit per second

P=3 P=5
t=0 t=4

P=4 P=2
t=1 t=6

t

R(t)

0

P=6
t=12

27

Delay Allocation
•  Reduce delay for flows using less than fair share

–  Advance finish times for sources whose queues drain
temporarily

•  Schedule based on Bi instead of Fi
–  Fi = Pi + max (Fi-1, Ai) à Bi = Pi + max (Fi-1, Ai - δ)
–  If Ai < Fi-1, conversation is active and δ has no effect
–  If Ai > Fi-1, conversation is inactive and δ determines

how much history to take into account
•  Infrequent senders do better when history is used

–  When δ = 0, no effect
–  When δ = infinity, an infrequent sender preempts other

senders

Weighted Fair Queuing

•  Different queues get different weights
– Take wi amount of bits from a queue in each round
– Fi = Si + Pi / wi

w=2

w=1

Stochastic Fair Queuing
•  Goal: fixed number of queues rather than various

number of queues
–  Compute a hash on each packet
–  Instead of per-flow queue have a queue per hash bin
–  Queues serviced in round-robin fashion
–  Memory allocation across all queues
–  When no free buffers, drop packet from longest queue

•  Limitations
–  An aggressive flow steals traffic from other flows in the

same hash
–  Has problems with packet size unfairness

29

30

Deficit Round Robin
•  O(1) rather than O(log Q)
•  Each queue is allowed to send Q bytes per round
•  If Q bytes are not sent (because packet is too large)

deficit counter of queue keeps track of unused portion
•  If queue is empty, deficit counter is reset to 0
•  Similar behavior as FQ but computationally simpler

•  Unused quantum is saved for the next round to
offset packet size unfairness

Design space for resource
allocation

•  Router+host joint control
– Router: Early signaling of congestion
– Host: react to congestion signals
– Case studies: DECbit, Random Early Detection

DECbit

•  Add a congestion bit to a packet header

•  A router sets the bit if its average queue length is non-zero
–  Queue length is measured over a busy+idle interval

•  If less than 50% of packets in one window do not have the bit set
–  A host increases its congest window by 1 packet

•  Otherwise
–  Decreases by 0.875

•  AIMD

Random Early Detection

•  Random early detection (Floyd93)
–  Goal: operate at the “knee”
–  Problem: very hard to tune (why)

•  RED is generalized by Active Queue Managment (AQM)

•  A router measures average queue length using
exponential weighted averaging algorithm:
–  AvgLen = (1-Weight) * AvgLen + Weight * SampleQueueLen

RED algorithm

•  If AvgLen ≤ MinThreshold
–  Enqueue packet

•  If MinThreshold < AvgLen < MaxThreshold
–  Calculate dropping probability P
–  Drop the arriving packet with probability P

•  If MaxThreshold ≤ AvgLen
–  Drop the arriving packet

avg_qlen

p

min_thresh

1

max_thresh

Even out packet drops

•  TempP = MaxP x (AvgLen – Min)/(Max-Min)
•  P = TempP / (1 – count * TempP)
•  Count

–  keeps track of how many newly arriving packets have been
queued when min < Avglen < max

–  It keeps drop evenly distributed over time, even if packets
arrive in burst

–  Reset to zero after a drop

avg_qlen

TempP

min_thresh

1

max_thresh

An example

•  MaxP = 0.02
•  AvgLen is half way between min and max thresholds
•  TempP = 0.01
•  A burst of 1000 packets arrive
•  With TempP, 10 packets may be discarded uniformly

randomly among the 1000 packets
•  With P, they are likely to be more evenly spaced out,

as P gradually increases if previous packets are not
discarded

Explicit Congestion Notification
•  A new IETF standard

•  Two bits in IP header
–  00: No ECN support
–  01/10: ECN enabled

transport
–  11: Congestion

experienced

•  Two TCP flags
– ECE: congestion

experienced
– CWR: cwnd reduced

X CE=1

ECE=1

CWR=1

Design Space for resource
allocation

•  Router-centric vs. Host-centric
– Router-centric: fair queuing
– Router/host joint design: Decbit, RED+ECN
– A host-centric scheme: TCP vegas

•  Reservation-based vs. Feedback-based

•  Window-based vs. Rate-based

Source-based congestion avoidance
•  TCP Vegas

–  Detect increases in queuing delay
–  Reduces sending rate

•  Details
–  Record baseRTT (minimum seen)
–  Compute ExpectedRate = cwnd/BaseRTT
–  Diff = ExpectedRate - ActualRate
–  When Diff < α, incr cwnd linearly, when Diff > β, decr

cwnd linearly
•  When timeout occurs, decreases multiplicatively
•  α < β

cwnd

Summary
•  Resource allocation for congestion avoidance

– Queuing disciplines
– RED+ECN, DECbit

•  RED is generalized by active queue management
– Source-based congestion avoidance

•  TCP Vegas

