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Overview 

•  What is an overlay network? 

•  Examples of overlay networks 
•  End system multicast 
•  Unstructured 

–  Gnutella, BitTorrent 

•  Structured  
–  DHT 



What is an overlay network? 

•  A logical network implemented on top of a lower-
layer network 

•  Can recursively build overlay networks 
•  An overlay link is defined by the application 
•  An overlay link may consist of multi hops of 

underlay links 



Ex: Virtual Private Networks 

•  Links are defined as IP tunnels 
•  May include multiple underlying routers 



Other overlays 

•  The Onion Router (Tor) 

•  Resilient Overlay Networks (RoN) 
– Route through overlay nodes to achieve better 

performance 

•  End system multicast 



Unstructured Overlay Networks 

•  Overlay links form random graphs 
•  No defined structure 
•  Examples 

– Gnutella: links are peer relationships 
•  One node that runs Gnutella knows some other Gnutella 

nodes 

– BitTorrent 
•  A node and nodes in its view 



Peer-to-Peer Cooperative Content 
Distribution 

•  Use the client’s upload bandwidth 
–  infrastructure-less 

•  Key challenges 
– How to find a piece of data 
– How to incentivize uploading 



Data lookup 

•  Centralized approach 
– Napster 
– BitTorrent trackers 

•  Distributed approach 
– Flooded queries 

•  Gnutella 

– Structured lookup 
•  DHT 



Gnutella 
•  All nodes are true peers  

–  A peer is the publisher, the uploader,  and the  downloader	
–  No single point of failure	

•  A node knows other nodes as it neighbors 

•  How to find an object 
– Send queries to neighbors 
– Neighbors forward to their neighbors 
– Results travel backward to the sender 
– Use query IDs to match responses and to avoid 

loops 



Gnutella 
•  Challenges 

– Efficiency and scalability issue 
•  File searches span across many nodes à generate much 

traffic 

–  Integrity (content pollution) 
•  Anyone can claim that he publishes valid content 
•  No guarantee of quality of objects 

–  Incentive issue 
•  No incentive for cooperation à free riding 



BitTorrent 

•  Designed by Bram Cohen 

•  Tracker for peer lookup 
– Later trackerless 

•  Rate-based Tit-for-tat for incentives 



Terminology 
•  Seeder: peer with the entire file 

– Original Seed: The first seed 
•  Leecher: peer that’s downloading the file 

– Fairer term might have been “downloader” 

•  Piece: a large file is divided into pieces 
•  Sub-piece: Further subdivision of a piece 

– The “unit for requests” is a sub piece 
– But a peer uploads only after assembling complete 

piece 
•  Swarm: peers that download/upload the same 

file 



BitTorrent overview 

•  A node announces available chunks to their peers	
•  Leechers request chunks from their peers (locally 

rarest-first)	

Leecher A

Leecher B

Seeder

Tracker

Leecher C

I have 1,3 I have 2



BitTorrent overview 

Leecher A

Leecher B

Seeder

Tracker

1

Leecher C

Request 1

•   Leechers request chunks from their peers (locally rarest-
first)	



BitTorrent overview 

Leecher A

Leecher B

Seeder

Tracker

1

Leecher C

Request 1

•   Leechers request chunks from their peers (locally rarest-
first)	
•  Leechers choke slow peers (tit-for-tat)	

• Keeps at most four peers. Three fastest, one random 
chosen (optimistic unchoke)	



Optimistic Unchoking 

•  Discover other faster peers and prompt them to 
reciprocate 

•  Bootstrap new peers with no data to upload 



Scheduling: 
Choosing pieces to request 

•  Rarest-first: Look at all pieces at all peers, and 
request piece that’s owned by fewest peers 
1.  Increases diversity in the pieces downloaded 

•  avoids case where a node and each of its peers have 
exactly the same pieces; increases throughput 

2.  Increases likelihood all pieces still available even 
if original seed leaves before any one node has 
downloaded the entire file 

3.  Increases chance for cooperation 

•  Random rarest-first: rank rarest, and 
randomly choose one with equal rareness 



Start time scheduling 

•  Random First Piece: 
– When peer starts to download, request random 

piece. 
•  So as to assemble first complete piece quickly 
•  Then participate in uploads 
•  May request sub pieces from many peers 

– When first complete piece assembled, switch to 
rarest-first 



Choosing pieces to request 
 

•  End-game mode: 
– When requests sent for all sub-pieces, (re)send 

requests to all peers. 
– To speed up completion of download 
– Cancel requests for downloaded sub-pieces 



Overview 

•  Overlay networks 
– Unstructured 
– Structured 

•  End systems multicast 
•  Distributed Hash Tables 
 



End system multicast 

•  End systems rather than routers organize into a tree, forward 
and duplicate packets 

•  Pros and cons 



Structured Networks 
•  A node forms links with specific neighbors to 

maintain a certain structure of the network 

•  Pros 
–  More efficient data lookup 
–  More reliable 

•  Cons 
–  Difficult to maintain the graph structure 

•  Examples 
–  Distributed Hash Tables 
–  End-system multicast: overlay nodes form a multicast 

tree 



DHT Overview 

•  Used in the real world 
– BitTorrent tracker implementation 
– Content distribution networks 
– Many other distributed systems including botnets 

•  What problems do DHTs solve? 
•  How are DHTs implemented? 



 Background 

•  A hash table is a data structure that stores (key, 
object) pairs. 

•  Key is mapped to a table index via a hash 
function for fast lookup. 

•  Content distribution networks 
– Given an URL, returns the object 



Example of a Hash table: a web cache 

•  Client requests http://www.cnn.com 
•  Web cache returns the page content located at 

the 1st entry of the table. 

http://www.cnn.com Page content 
http://www.nytimes.com ……. 
http://www.slashdot.org ….. 
… … 
… … 



DHT: why? 

•  If the number of objects is large, it is 
impossible for any single node to store it. 

•  Solution: distributed hash tables. 
– Split one large hash table into smaller tables and 

distribute them to multiple nodes 



DHT 
K V K V 

K V K V 



A content distribution network 

•  A single provider that manages multiple replicas 
•  A client obtains content from a close replica 



Basic function of DHT 
•  DHT is a “virtual” hash table 

–  Input: a key 
–  Output: a data item 

•  Data Items are stored by a network of nodes 

•  DHT abstraction 
–  Input: a key 
–  Output: the node that stores the key 

•  Applications handle key and data item association 



DHT: a visual example 
K V 

K V 

K V 

K V 

K V 

Insert (K1, V1) 

(K1, V1) 



DHT: a visual example 
K V K V 

K V 

K V 

K V 

Retrieve K1 

(K1, V1) 



Desired goals of DHT 
•  Scalability: each node does not keep much state 

•  Performance: small look up latency 

•  Load balancing: no node is overloaded with a large 
amount of state 

•  Dynamic reconfiguration: when nodes join and leave, 
the amount of state moved from nodes to nodes  is 
small. 

•  Distributed: no node is more important than others. 



A straw man design 

•  Suppose all keys are integers 
•  The number of nodes in the network is n 
•  id = key % n 

0 

1 2 

(0, V1) 
(3, V2) 

(1, V3) 
(4, V4) 

(2, V5) 
(5, V6)  



When node 2 dies 

•  A large number of data items need to be 
rehashed. 

0 

1 

(0, V1) 
(2, V5) 
(4, V4) 

(1, V3) 
(3, V2) 
(5, V6) 



Fix: consistent hashing 
•  A node is responsible for a range of keys 

– When a node joins or leaves, the expected fraction 
of objects that must be moved is the minimum 
needed to maintain a balanced load. 

– All DHTs implement consistent hashing 

– They differ in the underlying “geometry” 



Basic components of DHTs 
•  Overlapping key and node identifier space 

–  Hash(www.cnn.com/image.jpg) à a n-bit binary string 
–  Nodes that store the objects also have n-bit string as their 

identifiers 

•  Building routing tables  
–  Next hops (structure of a DHT) 
–  Distance functions 
–  These two determine the geometry of DHTs 

•  Ring, Tree, Hybercubes, hybrid (tree + ring) etc. 
–  Handle nodes join and leave 

•  Lookup and store interface 



Case study: Chord 

Note: textbook uses Pastry 



Chord: basic idea 

•  Hash both node id and key into a m-bit one-
dimension circular identifier space 

•  Consistent hashing: a key is stored at a node 
whose identifier is closest to the key in the 
identifier space 
– Key refers to both the key and its hash value. 



N32

N90

N105

K80

K20

K5

Circular 7-bit 
ID space 

Key 5 Node 105 

A key is stored at its successor: node with next higher ID 

Chord: ring topology 



Chord: how to find a node that stores a 
key? 

•  Solution 1: every node keeps a routing 
table to all other nodes 
– Given a key, a node knows which node id is 

successor of the key 
– The node sends the query to the successor 
– What are  the advantages and disadvantages of 

this solution? 



N32

N90

N105

N60

N10
N120

K80

“Where is key 80?” 

“N90 has K80” 

Solution 2: every node keeps a routing 
entry to the node’s successor (a linked 
list) 



Simple lookup algorithm 

Lookup(my-id, key-id) 
 n = my successor 
 if my-id < n < key-id 
  call Lookup(key-id) on node n   // next hop 
 else 
  return my successor      // done 

 
•  Correctness depends only on successors 
•  Q1: will this algorithm miss the real successor? 
•  Q2: what’s the average # of lookup hops? 



Solution 3: “Finger table” allows 
log(N)-time lookups 

•  Analogy: binary search 

N80

½¼

1/8

1/16
1/32
1/64
1/128



Finger i points to successor of n+2i-1 

•  The ith entry in the table at node n contains the identity of the first node s that 
succeeds n by at least 2i-1 

•  A finger table entry includes Chord Id and IP address 

•  Each node stores a small table log(N) 

N80

½¼

1/8

1/16
1/32
1/64
1/128

112 

N120



Chord finger table example 

0 

1 

2 

3 
4 

5 

6 

7 

0+20 

0+21 
0+22 

1 

3 
0 

Keys: 
5,6 

2 

5 

3 

3 
0 

Keys: 
1 3 

4 

7 

0 

0 
0 

5 
Keys: 
2 



Lookup with fingers 
Lookup(my-id, key-id) 

 If key-id in my storage 
  return my-value; 

   else 
  look in local finger table for    
   highest node n s.t. my-id < n < key-id 
  if n exists 
  call Lookup(key-id) on node n  // next hop 
 else 
  return my successor   // done   



Chord lookup example 

0 

1 

2 

3 
4 
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6 

7 

1 

2 
4 

1 

3 
0 

Keys: 
5,6 

2 

5 

3 

3 
0 

Keys: 
1 3 

4 

7 

0 

0 
0 

5 
Keys: 
2 

•  Lookup (1,2) 



Node join 

•  Maintain the invariant 
1. Each node’ successor is correctly maintained 
2. For every node k, node successor(k) answers for key k. It’s 

desirable that finger table entries are correct 

•  Each nodes maintains a predecessor pointer 

•  Tasks:  
–  Initialize predecessor and fingers of new node 
–  Update existing nodes’ state 
–  Notify apps to transfer state to new node 



Chord Joining: linked list insert 

•  Node n queries a known node n’ to initialize its state 
•  Look up for its successor: lookup (n) 

N36

N40

N25

1. Lookup(36) 
K30 
K38 



Join (2) 

N36

N40

N25

2. N36 sets its own 
successor pointer 

K30 
K38 



Join (3) 

•  Note that join does not make the network aware of n 

N36

N40

N25

3. Copy keys 26..36 
from N40 to N36 

K30 
K38 

K30 



Join (4): stabilize 

•  Stabilize 1) obtains a node n’s successor’s predecessor x, and determines whether x should be 
n’s successor 2) notifies n’s successor n’s existence 

–  N25 calls its successor N40 to return its predecessor 
–  Set its successor to N36 
–  Notifies N36 it is predecessor 

•  Update finger pointers in the background periodically 
–  Find the successor of each entry I 

•  Correct successors produce correct lookups 

N36

N40

N25

4. Set N25’s successor 
pointer 

K38 

K30 



Failures might cause incorrect 
lookup 

N120
N113

N102

N80

N85

N80 doesn’t know correct successor, so incorrect lookup 

N10

Lookup(90) 



Solution: successor lists 

•  Each node knows r immediate successors 
•  After failure, will know first live successor 
•  Correct successors guarantee correct lookups 

•  Guarantee is with some probability 

•  Higher layer software can be notified to duplicate 
keys at failed nodes to live successors 



Choosing the successor list length 
•  Assume 1/2 of nodes fail 

•  P(successor list all dead) = (1/2)r   
–  I.e. P(this node breaks the Chord ring) 
– Depends on independent failure 

•  P(no broken nodes) = (1 – (1/2)r)N 

–  r = 2log(N) makes prob. = 1 – 1/N 



Lookup with fault tolerance 

Lookup(my-id, key-id) 
 look in local finger table and successor-list   
  for highest node n s.t. my-id < n < key-id 
 if n exists 
  call Lookup(key-id) on node n  // next hop 
  if call failed, 
   remove n from finger table 
   return Lookup(my-id, key-id) 
 else return my successor   // done   



Chord performance 

•  Per node storage 
–  Ideally: K/N 
–  Implementation: large variance due to unevenly 

node id distribution 

•  Lookup latency 
– O(logN) 



Comments on Chord 
 
•  ID distance ≠ Network distance 

–  Reducing  lookup latency and locality 

•  Strict successor selection 
–  Can’t overshoot 

•  Asymmetry 
–  A node does not learn its routing table entries from queries 

it receives 

•  Later work fixes these issues 



Conclusion 

•  Overlay networks 
– Structured vs Unstructured 

•  Design of DHTs 
–  Chord 



Lab 3 Congestion Control 
•  This lab is based on Lab 1, you don’t have to change much to make it 

work. 
•  You are required to implement a congestion control algorithm 

–  Fully utilize the bandwidth 
–  Share the bottleneck fairly 
–  Write a report to describe your algorithm design and performance 

analysis 
•  You may want to  implement at least 

–  Slow start 
–  Congestion avoidance 
–  Fast retransmit and fast recovery 
–  RTO estimator 
–  New RENO is a plus. It handles multiple packets loss very well. 



A1 on linux21 

transmitting file1 

B1 on linux23 

transmitting file2 

A2 on linux22 

receiving file1 

B2 on linux24 

receiving file2 

relayer on linux25 

simulating the bottleneck 

port: 10000 port: 20000 

port: 40000 
port: 30000 

port: 50001 

port: 50003 

port: 50002 

port: 50004 

bottleneck link L 

Lab 3 Congestion Control 


