
CompSci 356: Computer Network
Architectures

Lecture 24: Overlay Networks
Chap 9.4

Xiaowei Yang
xwy@cs.duke.edu

Overview

•  What is an overlay network?

•  Examples of overlay networks
•  End system multicast
•  Unstructured

–  Gnutella, BitTorrent

•  Structured
–  DHT

What is an overlay network?

•  A logical network implemented on top of a lower-
layer network

•  Can recursively build overlay networks
•  An overlay link is defined by the application
•  An overlay link may consist of multi hops of

underlay links

Ex: Virtual Private Networks

•  Links are defined as IP tunnels
•  May include multiple underlying routers

Other overlays

•  The Onion Router (Tor)

•  Resilient Overlay Networks (RoN)
– Route through overlay nodes to achieve better

performance

•  End system multicast

Unstructured Overlay Networks

•  Overlay links form random graphs
•  No defined structure
•  Examples

– Gnutella: links are peer relationships
•  One node that runs Gnutella knows some other Gnutella

nodes

– BitTorrent
•  A node and nodes in its view

Peer-to-Peer Cooperative Content
Distribution

•  Use the client’s upload bandwidth
–  infrastructure-less

•  Key challenges
– How to find a piece of data
– How to incentivize uploading

Data lookup

•  Centralized approach
– Napster
– BitTorrent trackers

•  Distributed approach
– Flooded queries

•  Gnutella

– Structured lookup
•  DHT

Gnutella
•  All nodes are true peers

–  A peer is the publisher, the uploader, and the downloader	
–  No single point of failure	

•  A node knows other nodes as it neighbors

•  How to find an object
– Send queries to neighbors
– Neighbors forward to their neighbors
– Results travel backward to the sender
– Use query IDs to match responses and to avoid

loops

Gnutella
•  Challenges

– Efficiency and scalability issue
•  File searches span across many nodes à generate much

traffic

–  Integrity (content pollution)
•  Anyone can claim that he publishes valid content
•  No guarantee of quality of objects

–  Incentive issue
•  No incentive for cooperation à free riding

BitTorrent

•  Designed by Bram Cohen

•  Tracker for peer lookup
– Later trackerless

•  Rate-based Tit-for-tat for incentives

Terminology
•  Seeder: peer with the entire file

– Original Seed: The first seed
•  Leecher: peer that’s downloading the file

– Fairer term might have been “downloader”

•  Piece: a large file is divided into pieces
•  Sub-piece: Further subdivision of a piece

– The “unit for requests” is a sub piece
– But a peer uploads only after assembling complete

piece
•  Swarm: peers that download/upload the same

file

BitTorrent overview

•  A node announces available chunks to their peers	
•  Leechers request chunks from their peers (locally

rarest-first)	

Leecher A

Leecher B

Seeder

Tracker

Leecher C

I have 1,3 I have 2

BitTorrent overview

Leecher A

Leecher B

Seeder

Tracker

1

Leecher C

Request 1

•  Leechers request chunks from their peers (locally rarest-
first)	

BitTorrent overview

Leecher A

Leecher B

Seeder

Tracker

1

Leecher C

Request 1

•  Leechers request chunks from their peers (locally rarest-
first)	
•  Leechers choke slow peers (tit-for-tat)	

• Keeps at most four peers. Three fastest, one random
chosen (optimistic unchoke)	

Optimistic Unchoking

•  Discover other faster peers and prompt them to
reciprocate

•  Bootstrap new peers with no data to upload

Scheduling:
Choosing pieces to request

•  Rarest-first: Look at all pieces at all peers, and
request piece that’s owned by fewest peers
1.  Increases diversity in the pieces downloaded

•  avoids case where a node and each of its peers have
exactly the same pieces; increases throughput

2.  Increases likelihood all pieces still available even
if original seed leaves before any one node has
downloaded the entire file

3.  Increases chance for cooperation

•  Random rarest-first: rank rarest, and
randomly choose one with equal rareness

Start time scheduling

•  Random First Piece:
– When peer starts to download, request random

piece.
•  So as to assemble first complete piece quickly
•  Then participate in uploads
•  May request sub pieces from many peers

– When first complete piece assembled, switch to
rarest-first

Choosing pieces to request

•  End-game mode:
– When requests sent for all sub-pieces, (re)send

requests to all peers.
– To speed up completion of download
– Cancel requests for downloaded sub-pieces

Overview

•  Overlay networks
– Unstructured
– Structured

•  End systems multicast
•  Distributed Hash Tables

End system multicast

•  End systems rather than routers organize into a tree, forward
and duplicate packets

•  Pros and cons

Structured Networks
•  A node forms links with specific neighbors to

maintain a certain structure of the network

•  Pros
–  More efficient data lookup
–  More reliable

•  Cons
–  Difficult to maintain the graph structure

•  Examples
–  Distributed Hash Tables
–  End-system multicast: overlay nodes form a multicast

tree

DHT Overview

•  Used in the real world
– BitTorrent tracker implementation
– Content distribution networks
– Many other distributed systems including botnets

•  What problems do DHTs solve?
•  How are DHTs implemented?

 Background

•  A hash table is a data structure that stores (key,
object) pairs.

•  Key is mapped to a table index via a hash
function for fast lookup.

•  Content distribution networks
– Given an URL, returns the object

Example of a Hash table: a web cache

•  Client requests http://www.cnn.com
•  Web cache returns the page content located at

the 1st entry of the table.

http://www.cnn.com Page content
http://www.nytimes.com …….
http://www.slashdot.org …..
… …
… …

DHT: why?

•  If the number of objects is large, it is
impossible for any single node to store it.

•  Solution: distributed hash tables.
– Split one large hash table into smaller tables and

distribute them to multiple nodes

DHT
K V K V

K V K V

A content distribution network

•  A single provider that manages multiple replicas
•  A client obtains content from a close replica

Basic function of DHT
•  DHT is a “virtual” hash table

–  Input: a key
–  Output: a data item

•  Data Items are stored by a network of nodes

•  DHT abstraction
–  Input: a key
–  Output: the node that stores the key

•  Applications handle key and data item association

DHT: a visual example
K V

K V

K V

K V

K V

Insert (K1, V1)

(K1, V1)

DHT: a visual example
K V K V

K V

K V

K V

Retrieve K1

(K1, V1)

Desired goals of DHT
•  Scalability: each node does not keep much state

•  Performance: small look up latency

•  Load balancing: no node is overloaded with a large
amount of state

•  Dynamic reconfiguration: when nodes join and leave,
the amount of state moved from nodes to nodes is
small.

•  Distributed: no node is more important than others.

A straw man design

•  Suppose all keys are integers
•  The number of nodes in the network is n
•  id = key % n

0

1 2

(0, V1)
(3, V2)

(1, V3)
(4, V4)

(2, V5)
(5, V6)

When node 2 dies

•  A large number of data items need to be
rehashed.

0

1

(0, V1)
(2, V5)
(4, V4)

(1, V3)
(3, V2)
(5, V6)

Fix: consistent hashing
•  A node is responsible for a range of keys

– When a node joins or leaves, the expected fraction
of objects that must be moved is the minimum
needed to maintain a balanced load.

– All DHTs implement consistent hashing

– They differ in the underlying “geometry”

Basic components of DHTs
•  Overlapping key and node identifier space

–  Hash(www.cnn.com/image.jpg) à a n-bit binary string
–  Nodes that store the objects also have n-bit string as their

identifiers

•  Building routing tables
–  Next hops (structure of a DHT)
–  Distance functions
–  These two determine the geometry of DHTs

•  Ring, Tree, Hybercubes, hybrid (tree + ring) etc.
–  Handle nodes join and leave

•  Lookup and store interface

Case study: Chord

Note: textbook uses Pastry

Chord: basic idea

•  Hash both node id and key into a m-bit one-
dimension circular identifier space

•  Consistent hashing: a key is stored at a node
whose identifier is closest to the key in the
identifier space
– Key refers to both the key and its hash value.

N32

N90

N105

K80

K20

K5

Circular 7-bit
ID space

Key 5 Node 105

A key is stored at its successor: node with next higher ID

Chord: ring topology

Chord: how to find a node that stores a
key?

•  Solution 1: every node keeps a routing
table to all other nodes
– Given a key, a node knows which node id is

successor of the key
– The node sends the query to the successor
– What are the advantages and disadvantages of

this solution?

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

Solution 2: every node keeps a routing
entry to the node’s successor (a linked
list)

Simple lookup algorithm

Lookup(my-id, key-id)
 n = my successor
 if my-id < n < key-id
 call Lookup(key-id) on node n // next hop
 else
 return my successor // done

•  Correctness depends only on successors
•  Q1: will this algorithm miss the real successor?
•  Q2: what’s the average # of lookup hops?

Solution 3: “Finger table” allows
log(N)-time lookups

•  Analogy: binary search

N80

½¼

1/8

1/16
1/32
1/64
1/128

Finger i points to successor of n+2i-1

•  The ith entry in the table at node n contains the identity of the first node s that
succeeds n by at least 2i-1

•  A finger table entry includes Chord Id and IP address

•  Each node stores a small table log(N)

N80

½¼

1/8

1/16
1/32
1/64
1/128

112

N120

Chord finger table example

0

1

2

3
4

5

6

7

0+20

0+21
0+22

1

3
0

Keys:
5,6

2

5

3

3
0

Keys:
1 3

4

7

0

0
0

5
Keys:
2

Lookup with fingers
Lookup(my-id, key-id)

 If key-id in my storage
 return my-value;

 else
 look in local finger table for
 highest node n s.t. my-id < n < key-id
 if n exists
 call Lookup(key-id) on node n // next hop
 else
 return my successor // done

Chord lookup example

0

1

2

3
4

5

6

7

1

2
4

1

3
0

Keys:
5,6

2

5

3

3
0

Keys:
1 3

4

7

0

0
0

5
Keys:
2

•  Lookup (1,2)

Node join

•  Maintain the invariant
1. Each node’ successor is correctly maintained
2. For every node k, node successor(k) answers for key k. It’s

desirable that finger table entries are correct

•  Each nodes maintains a predecessor pointer

•  Tasks:
–  Initialize predecessor and fingers of new node
–  Update existing nodes’ state
–  Notify apps to transfer state to new node

Chord Joining: linked list insert

•  Node n queries a known node n’ to initialize its state
•  Look up for its successor: lookup (n)

N36

N40

N25

1. Lookup(36)
K30
K38

Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

Join (3)

•  Note that join does not make the network aware of n

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

Join (4): stabilize

•  Stabilize 1) obtains a node n’s successor’s predecessor x, and determines whether x should be
n’s successor 2) notifies n’s successor n’s existence

–  N25 calls its successor N40 to return its predecessor
–  Set its successor to N36
–  Notifies N36 it is predecessor

•  Update finger pointers in the background periodically
–  Find the successor of each entry I

•  Correct successors produce correct lookups

N36

N40

N25

4. Set N25’s successor
pointer

K38

K30

Failures might cause incorrect
lookup

N120
N113

N102

N80

N85

N80 doesn’t know correct successor, so incorrect lookup

N10

Lookup(90)

Solution: successor lists

•  Each node knows r immediate successors
•  After failure, will know first live successor
•  Correct successors guarantee correct lookups

•  Guarantee is with some probability

•  Higher layer software can be notified to duplicate
keys at failed nodes to live successors

Choosing the successor list length
•  Assume 1/2 of nodes fail

•  P(successor list all dead) = (1/2)r
–  I.e. P(this node breaks the Chord ring)
– Depends on independent failure

•  P(no broken nodes) = (1 – (1/2)r)N

–  r = 2log(N) makes prob. = 1 – 1/N

Lookup with fault tolerance

Lookup(my-id, key-id)
 look in local finger table and successor-list
 for highest node n s.t. my-id < n < key-id
 if n exists
 call Lookup(key-id) on node n // next hop
 if call failed,
 remove n from finger table
 return Lookup(my-id, key-id)
 else return my successor // done

Chord performance

•  Per node storage
–  Ideally: K/N
–  Implementation: large variance due to unevenly

node id distribution

•  Lookup latency
– O(logN)

Comments on Chord

•  ID distance ≠ Network distance

–  Reducing lookup latency and locality

•  Strict successor selection
–  Can’t overshoot

•  Asymmetry
–  A node does not learn its routing table entries from queries

it receives

•  Later work fixes these issues

Conclusion

•  Overlay networks
– Structured vs Unstructured

•  Design of DHTs
–  Chord

Lab 3 Congestion Control
•  This lab is based on Lab 1, you don’t have to change much to make it

work.
•  You are required to implement a congestion control algorithm

–  Fully utilize the bandwidth
–  Share the bottleneck fairly
–  Write a report to describe your algorithm design and performance

analysis
•  You may want to implement at least

–  Slow start
–  Congestion avoidance
–  Fast retransmit and fast recovery
–  RTO estimator
–  New RENO is a plus. It handles multiple packets loss very well.

A1 on linux21

transmitting file1

B1 on linux23

transmitting file2

A2 on linux22

receiving file1

B2 on linux24

receiving file2

relayer on linux25

simulating the bottleneck

port: 10000 port: 20000

port: 40000
port: 30000

port: 50001

port: 50003

port: 50002

port: 50004

bottleneck link L

Lab 3 Congestion Control

