CompSci 356: Computer Network
Architectures
Lecture 24: Overlay Networks
Chap 9.4

Xiaowei Yang
xwy@cs.duke.edu

Overview

* What is an overlay network?

« Examples of overlay networks
* End system multicast
* Unstructured
— Gnutella, BitTorrent

» Structured
— DHT

What is an overlay network?

A logical network implemented on top of a lower-
layer network

Can recursively build overlay networks
An overlay link is defined by the application

An overlay link may consist of multi hops of
underlay links

Ex: Virtual Private Networks

IHdr

» Links are defined as IP tunnels

A

IHdr

B

IHdr

C

Lo o | | g om |

OHdr

IHdr

OHdr

IHdr

* May include multiple underlying routers

Other overlays

* The Onion Router (Tor)

 Resilient Overlay Networks (RoN)

— Route through overlay nodes to achieve better
performance

* End system multicast

Unstructured Overlay Networks

 Overlay links form random graphs
* No defined structure

» Examples

— Gnutella: links are peer relationships

* One node that runs Gnutella knows some other Gnutella
nodes

— BitTorrent
* A node and nodes in its view

Peer-to-Peer Cooperative Content
Distribution

 Use the client’s upload bandwidth
— infrastructure-less

» Key challenges
— How to find a piece of data
— How to incentivize uploading

Data lookup

 Centralized approach
— Napster
— BitTorrent trackers

* Distributed approach
— Flooded queries
* Gnutella

— Structured lookup
« DHT

Gnutella

* All nodes are true peers
— A peer is the publisher, the uploader, and the downloader

- No single point of failure

* A node knows other nodes as it neighbors

« How to find an object
— Send queries to neighbors

— Neighbors forward to their neighbors
— Results travel backward to the sender
— Use query IDs to match responses and to avoid

loops

Gnutella
 Challenges

— Efficiency and scalability issue

» File searches span across many nodes = generate much
traffic

— Integrity (content pollution)
* Anyone can claim that he publishes valid content
* No guarantee of quality of objects

— Incentive issue
* No incentive for cooperation > free riding

10

BitTorrent

* Designed by Bram Cohen

 Tracker for peer lookup

— Later trackerless

» Rate-based Tit-for-tat for incentives

11

Terminology

Seeder: peer with the entire file
— Original Seed: The first seed

Leecher: peer that’s downloading the file

— Fairer term might have been “downloader”

Piece: a large file is divided into pieces

Sub-piece: Further subdivision of a piece
— The “unit for requests” is a sub piece

— But a peer uploads only after assembling complete

piece

Swarm: peers that download/upload the same

file

12

BitTorrent overview

o

Leecher A Tracker
D e D
lhave 1,3 Ihave2
S v S
Seeder @ Leecher C
S
Leecher B

* A node announces available chunks to their peers

* Leechers request chunks from their peers (locally
rarest-first)

13

Leechers A and B also announce to their peers
which chunks they possess

Now we show BitTorrent’s incentive

mechanism, which is also known as rate-based tit-
for-tat

In this case, leecher A makes the first step and otfers
to unconditionally upload for 10 seconds chunks to
leecher B. In BT lingo, this step is called optimistic

unchoking

14

Leechers A and B also announce to their peers
which chunks they possess

Now we show BitTorrent’s incentive

mechanism, which is also known as rate-based tit-
for-tat

In this case, leecher A makes the first step and otfers
to unconditionally upload for 10 seconds chunks to
leecher B. In BT lingo, this step is called optimistic

unchoking

15

Optimistic Unchoking

 Discover other faster peers and prompt them to
reciprocate

* Bootstrap new peers with no data to upload

16

Scheduling:
Choosing pieces to request

 Rarest-first: Look at all pieces at all peers, and
request piece that’s owned by fewest peers

1. Increases diversity in the pieces downloaded

» avoids case where a node and each of its peers have
exactly the same pieces; increases throughput

2. Increases likelihood all pieces still available even
if original seed leaves before any one node has
downloaded the entire file

3. Increases chance for cooperation

» Random rarest-first: rank rarest, and
randomly choose one with equal rareness

17

Start time scheduling

e Random First Piece:

— When peer starts to download, request random
piece.
* So as to assemble first complete piece quickly
* Then participate in uploads
» May request sub pieces from many peers

— When first complete piece assembled, switch to
rarest-first

the rarest may be in only one peer

so it picks a random instead which may be at many peers
and downloads subpieces in SGM from multiple peers
like in EGM

but in the other modes he only downloads it

subpieces from the same peer

18

Choosing pieces to request

* End-game mode:

— When requests sent for all sub-pieces, (re)send
requests to all peers.

— To speed up completion of download
— Cancel requests for downloaded sub-pieces

The End Game is the name for the final download strategy — there is a
tendency for the last few pieces of a torrent to download quite slowly. To avoid
this, many BitTorrent implementations issue requests for the same remaining
blocks to all its peers. When a block comes in from one peer, you send
CANCEL messages to all the other peers requested from, in order to save
bandwidth. Its cheaper to send a CANCEL message than to receive the full
block and just discard it.

However, there is no formal definition of when to enter End Game Mode. |
found two popular definitions:
1. All blocks have been requested

2. Number of blocks in transit is greater than number of blocks left, and no
more than 20

Overview

* Overlay networks
— Unstructured
— Structured

* End systems multicast
* Distributed Hash Tables

20

End system

* End systems rather than routers organize into a tree, forward
and duplicate packets

* Pros and cons

+ less infrastructure requirement

- Single point of failure

- Node joins and leaves causing much chain
- one node may still be congested

- packets may traverse the same link twice

21

Structured Networks

A node forms links with specific neighbors to
maintain a certain structure of the network

Pros
— More efficient data lookup
— More reliable

Cons
— Difficult to maintain the graph structure

Examples
— Distributed Hash Tables

— End-system multicast: overlay nodes form a multicast
tree

22

DHT Overview

 Used in the real world
— BitTorrent tracker implementation
— Content distribution networks
— Many other distributed systems including botnets

* What problems do DHTs solve?
* How are DHTs implemented?

23

Background

A hash table is a data structure that stores (key,
object) pairs.

» Key is mapped to a table index via a hash
function for fast lookup.

* Content distribution networks
— Given an URL, returns the object

24

Example of a Hash table: a web cache

http://www.cnn.com

Page content

http://www.nytimes.com

http://www.slashdot.org

* Client requests http://www.cnn.com

» Web cache returns the page content located at
the 15t entry of the table.

25

DHT: why?

« If the number of objects is large, it is
impossible for any single node to store it.

» Solution: distributed hash tables.

— Split one large hash table into smaller tables and
distribute them to multiple nodes

26

DHT

27

A content distribution network

A single provider that manages multiple replicas
A client obtains content from a close replica

28

Basic function of DHT

DHT is a “virtual” hash table
— Input: a key
— Output: a data item

Data Items are stored by a network of nodes

DHT abstraction
— Input: a key
— Output: the node that stores the key

Applications handle key and data item association

29

KV

Ins

ert (Ky, V1)

DHT: a visual example

: éza -

30

DHT: a visual example

KV

(K1, V1)

31

Desired goals of DHT

Scalability: each node does not keep much state
Performance: small look up latency

Load balancing: no node is overloaded with a large
amount of state

Dynamic reconfiguration: when nodes join and leave,
the amount of state moved from nodes to nodes is
small.

Distributed: no node is more important than others.

32

A straw man design

(01 Vl)
(31 VZ)

 Suppose all keys are integers
* The number of nodes in the network 1s n
 id=key %n

33

When node 2 dies

(0, V1)
(2, V5)
4, V4
(1,V3) ()
(3, V2)
(5, V6)

* A large number of data items need to be
rehashed.

34

Fix: consistent hashing

» A node is responsible for a range of keys

— When a node joins or leaves, the expected fraction
of objects that must be moved is the minimum
needed to maintain a balanced load.

— All DHTs implement consistent hashing

— They differ in the underlying “geometry”

35

Basic components of DHT's

* Overlapping key and node identifier space
— Hash(www.cnn.com/image.jpg) = a n-bit binary string

— Nodes that store the objects also have n-bit string as their
identifiers

* Building routing tables
— Next hops (structure of a DHT)
— Distance functions

— These two determine the geometry of DHTs
» Ring, Tree, Hybercubes, hybrid (tree + ring) etc.
— Handle nodes join and leave

» Lookup and store interface

36

Case study: Chord

Note: textbook uses Pastry

37

Chord: basic idea

» Hash both node id and key into a m-bit one-
dimension circular identifier space

 Consistent hashing: a key is stored at a node
whose identifier is closest to the key in the
identifier space

— Key refers to both the key and its hash value.

38

~

Chord: ring topology

Node 105 Key 5—— K5

N105

Circular 7-bit
ID space

NOO

K80

K20

N32

A key is stored at its successor: node with next higher ID

Ids live in a single circular space.

Chord: how to find a node that stores a
key?

 Solution 1: every node keeps a routing
table to all other nodes

— Given a key, a node knows which node id is
successor of the key

— The node sends the query to the successor

— What are the advantages and disadvantages of
this solution?

40

Solution 2: every node keeps a routing
entry to the node’s successor (a linked

list)

K80

N120

N105

N90

"N90 has K80"

x N60

—

N10 |“Where is key 80?”

\

N32

41

Simple lookup algorithm

Lookup(my-id, key-id)
n = my Successor
if my-id <n < key-id
call Lookup(key-id) on node n // next hop
else
return my successor // done

» Correctness depends only on successors
* Q1: will this algorithm miss the real successor?
* Q2: what’s the average # of lookup hops?

Always undershoots to predecessor. So never misses the real
SUCCEeSSOr.

Lookup procedure isn’t inherently log(n). But finger table causes it to be.

Solution 3: “Finger table” allows
log(N)-time lookups

 Analogy: binary search

Small tables, but multi-hop lookup. Table entries: IP address and Chord
ID.

Navigate in ID space, route queries closer to successor. Log(n) tables,
log(n) hops.

Route to a document between 1A1 and 1/2

Finger i points to successor of n+2*/

N120

» The ith entry in the table at node n contains the identity of the first node s that
succeeds n by at least 2i-!

» A finger table entry includes Chord Id and IP address

* Each node stores a small table log(N)

Small tables, but multi-hop lookup. Table entries: IP address and Chord
ID.

Navigate in ID space, route queries closer to successor. Log(n) tables,
log(n) hops.

Route to a document between 1AI and 1/2

Chord finger table example

Keys:
5,6

Keys:
3 1
0
0 Keys:
0 2
0

Lookup with fingers

Lookup(my-id, key-id)
If key-id in my storage
return my-value;
else
look in local finger table for
highest node n s.t. my-id < n < key-id
if n exists
call Lookup(key-id) on node n // next hop
else
return my successor // done

Always undershoots to predecessor. So never misses the real
SUCCEeSSOr.

Lookup procedure isn’t inherently log(n). But finger table causes it to be.

Chord lookup example
* Lookup (1,2) 1 1 Keys:
5,6

3 Keys:
3 1
0
0 Keys:
0 2
0

Look up key 2 at node 1. key 2 < successor. So send to successor directly.

47

Node join

e Maintain the invariant

1. Each node’ successor is correctly maintained

2. For every node k, node successor(k) answers for key k. It’s
desirable that finger table entries are correct

» Each nodes maintains a predecessor pointer

» Tasks:
— Initialize predecessor and fingers of new node
— Update existing nodes’ state
— Notify apps to transfer state to new node

48

Chord Joining: linked list insert

N36

1. Lookup(36)

* Node n queries a known node n’ to initialize its state
» Look up for its successor: lookup (n)

49

Join (2)

2. N36 sets its own

successor pointer

50

Join (3)

3. Copy keys 26..36 K30

from N40 to N36

» Note that join does not make the network aware of n

Concurrent join and stabilization are provably consistent eventually.

Join (4): stabilize

N25

™~

4. Set N25's successor K30

pointer
-

N40
K38

Stabilize 1) obtains a node n’s successor’s predecessor X, and determines whether x should be
n’s successor 2) notifies n’s successor n’s existence

— N25 calls its successor N40 to return its predecessor

— Set its successor to N36
— Notifies N36 it is predecessor

Update finger pointers in the background periodically
— Find the successor of each entry [

Correct successors produce correct lookups

Failures might cause incorrect
lookup

Lookup(90)

N80 doesn’t know correct successor, so incorrect lookup

No problem until lookup gets to a node which knows of no node < key.
There’s a replica of K90 at N113, but we can'’t find it.

Solution: successor lists

Each node knows » immediate successors
After failure, will know first live successor
Correct successors guarantee correct lookups

Guarantee is with some probability

Higher layer software can be notified to duplicate
keys at failed nodes to live successors

54

Choosing the successor list length

* Assume 1/2 of nodes fail

» P(successor list all dead) = (1/2)
— L.e. P(this node breaks the Chord ring)
— Depends on independent failure

* P(no broken nodes) = (1 — (1/2)")Y
— r = 2log(N) makes prob. = I — I/N

95

Lookup with fault tolerance

Lookup(my-id, key-id)
look in local finger table and successor-list
for highest node n s.t. my-id <n < key-id
if n exists
call Lookup(key-id) on node n // next hop
if call failed,
remove n from finger table
return Lookup(my-id, key-id)
else return my successor // done

Always undershoots to predecessor. So never misses the real
SUCCEeSSOr.

Lookup procedure isn’t inherently log(n). But finger table causes it to be.

Chord performance

* Per node storage
— Ideally: K/N

— Implementation: large variance due to unevenly
node id distribution

» Lookup latency
— O(logN)

57

Comments on Chord

ID distance # Network distance
— Reducing lookup latency and locality

Strict successor selection
— Can’t overshoot

Asymmetry
— A node does not learn its routing table entries from queries
it receives

Later work fixes these issues

58

Conclusion

* Overlay networks
— Structured vs Unstructured

* Design of DHTs
— Chord

59

