CS 356: Computer Network
Architectures

Lecture 26: Router hardware,
Software defined networking, and
programmable routers

|[PD] chapter 3.4

Xiaowel Yang

xwy(@cs.duke.edu

Overview

* Switching hardware
* Software defined networking

* Programmable routers

Switching hardware

Software switch

b 4

* Packets cross the bus twice
— Half of the memory bus speed
* 133Mhz, 64-bit wide I/O bus = 4Gpbs
* Short packets reduce throughput
— 1Mpps, 64 bytes packet
— Throughput = 512 Mbps
— Shared by 10 ports: 51.2Mbps

Hardware switches

=

Switch
fabric

e Ports communicate with the outside world
— Eg, maintains VCI tables

* Switching fabric 1s simple and fast

Performance bottlenecks

* Input port
— Line speed: 2.48 Gbps
e 2.48x10°/(64x8) = 4.83 Mpps

Port 1

_ @, gy

- 6
* Buffering J_M,Q\:D o Port 2

Switch

— Head of line blocking
— May limit throughput to only 59%

— Use output buffers or sophisticated buffer
management algorithms to improve performance

Fabrics

e Shared bus

— The workstation switch

* Shared memory

— Input ports read packets to shared memory
— Output ports read them out to links

Fabrics

 Cross bar

— A matrix of pathways that can be configured to
accept packets from all inputs at once

e a._’ Fabrics

: * Self routing

Original packet
header

— a self-routing header

added by the input
o D port
— Most scalable
sgﬂ_mm — Often built from 2x2
e switching units

—p Switch —_—
fabric

()

An example of self-routing

001
011 001
110

111 011

O .
111

* 3-bit numbers are self-routing headers

e Multiple 2x2 switching elements
— 0: upper output; 1: lower output

11

Software Defined Networking

Slides adapted from Mohammad
Alizadeh (MIT)’s SDN lecture

Outline

Networking before SDN
What 1s SDN?
OpenFlow basics

Why is SDN happening now? (a brief history)

Networking before SDN

1. Figure out which routers and links are present.
0—@ 2. Run Dijkstra’s algorithm to find shortest paths.

“If a packet is going to B,
then send it to output 3”

Data

The Networking “Planes™

* Data plane: processing and delivery of packets with local forwarding
state

— Forwarding state + packet header - forwarding decision

— Filtering, buffering, scheduling

* Control plane: computing the forwarding state in routers
— Determines how and where packets are forwarded

— Routing, traffic engineering, failure detection/recoverys, ...

* Management plane: configuring and tuning the network
— Traffic engineering, ACL config, device provisioning,

Timescales

Data Control Management
Time- |Packet Event (10 Human (min
scale (nsec) msec to sec) |to hours)
Location | Linecard Router Humans or
hardware |software scripts

Data and Control Planes

control plane
data plane Processor </

=

Line card Line card

Switching

Line card Line card

Fabric

Line card Line card

Data Plane

* Streaming algorithms on packets

— Matching on some header bits

— Perform some actions

* Example: [P Forwarding
1.2.34 1.23.7 1.2.3.156

host

host

LAN 1

host

route WAN

1.2.3.0/24

5.6.7.0/24

S
>

forwarding table

route

5.6.7.8 5.6.7.9

host

host

host

WAN

route

LAN 2

Control Plane

* Compute paths the packets will follow
— Populate forwarding tables
— Traditionally, a distributed protocol

* Example: Link-state routing (OSPF, IS-IS)
— Flood the entire topology to all nodes
— Each node computes shortest paths

— Drijkstra’s algorithm

Management Plane

 Traffic Engineering: setting the weights
— Inversely proportional to link capacity?
— Proportional to propagation delay?
— Network-wide optimization based on traffic?

2
AT
3
<\2 (D 5

3

Challenges

(Too) many task-specific control mechanisms
— No modularity, limited functionality

Indirect .
W The network 1s

=2=2¢ * Hard to reason about

e Hard to evolve
™ * Expensive

Interacting protocols and mechanisms
— Routing, addressing, access control, QoS

Example 1: Inter-domain Routing

* Today’s inter-domain routing protocol, BGP,
artificially constrains routes

- Routing only on destination IP address blocks
- Can only influence immediate neighbors
- Very difficult to incorporate other information

* Application-specific peering

— Route video traffic one way, and non-video another
* Blocking denial-of-service traffic

— Dropping unwanted traffic further upstream

* Inbound traffic engineering
— Splitting incoming traffic over multiple peering links

|
-2

1
|

==)

 Two locations, each with data center &
front office

* All routers exchange routes over all links

|
-2

1
|

chi-DC
chi-FO
nyc-DC
nyc-FO

= 2
— ==
Packet filter: ; R?
Drop nyc-FO -> * chi
Permit *

@ Front Office
Packet filter: R5
Drop chi-FO -> * nyc
Permit * /_“

T

T
>
=
S
(@)
)
>
@
@)
@)
@p]
@p]
®
@)
=
-
=
|
-2

Packet filter: I rR2

Drop nyc-FO ->* i chi

Permit * _
~ Front Office

Packet filter: R5

Drop chi-FO -> * nyc

Permit * /E“
R4

A new short-cut link added between data centers
* Intended for backup traffic between centers

Example 2: Access Controh

4 = 2
— ==
Packet filter: I rR2
Drop nyc-FO -> * chi
Permit * _
~ Front Office
Packet filter: R5
Drop chi-FO -> * nyc

Permit * /E“
R4

* Oops —new link lets packets violate access control policy!
* Routing changed, but

* Packet filters don’t update automatically

Software Defined Network

A network 1n which the control plane 1s
physically separate from the data plane.

and

A single (logically centralized) control plane
controls several forwarding devices.

Software Defined Network (SDN)

- Control - Control ~ Control
Program Program Program

Global Network Map 0.0

Control Plane

Forwarding

Forwarding
Forwarding

Forwarding

A Major Trend 1n Networking

Google Microsoft e

\ ‘[Entire backbone = _»

runs on SDN

'l Bought for $1.2 billion
NICIra (mostly cash)

How SDN Changes the Network

_ Feaure | Feature

Feature W Feature

OS — :
Feature W Feature
Custom Hardware

OS

Feature i ® Feature
Custom Hardware

0S — —
Feature R Feature

Custom Hardware

OS

el B Custom Hardware

OS

Custom Hardware

Software Defined Network (SDN)
2. At least one Network OS

probably many.
Open- andclosed-source

3. Consistent, up-to-date global network view

>~ 1. Open interface to packet

: forwarding c
Packet OpenFIow

orwarding Packe
] orwarding
. Packe
Packe orwarding

orwarding

Packe
orwarding

Network OS

Network OS: distributed system that creates
a consistent, up-to-date network view

— Runs on servers (controllers) in the network

— NOX, ONIX, Floodlight, Trema, OpenDaylight,
HyperFlow, Kandoo, Beehive, Beacon,
Maestro, ... + more

Uses forwarding abstraction to:

— Get state information from forwarding
elements

— Give control directives to forwarding elements

Software Defined Network (SDN)

orwarding

Control Program

Control program operates on view of network
— Input: global network view (graph/database)

— Output: configuration of each network device

Control program is not a distributed system
— Abstraction hides details of distributed state

Forwarding Abstraction

Purpose: Standard way of defining
forwarding state
— Flexible

* Behavior specified by control plane
* Built from basic set of forwarding primitives

— Minimal
e Streamlined for speed and low-power
e Control program not vendor-specific

* OpenFlow is an example of such an
abstraction

Software Defined Network

Virtual Topolog

Network Hypervisor

()
Global Network View

S
Network OS ©® e
o O

W

Virtualization Simplifies Control Program

Abstract Network View

A->B
drop

Hypervisor then inserts flow entries as needed

»

A->B

Global Network Viev

38

Does SDN Simplify the Network?

Does SDN Simplify the Network?

Abstraction doesn’t eliminate complexity
- NOS, Hypervisor are still complicated pieces of code

SDN main achievements
- Simplifies interface for control program (user-specific)
- Pushes complexity into reusable code (SDN platform)

Just like compillers....

OpenFlow Basics

OpenFlow Basics

Network OS 0 4 ®

OpenFlow Protocol

Ethernet Switch

OpenFlow Basics

“If header = p, send to port 4”

“If header = q, overwrite header with r,
add header s, and send to ports 5,6

“If header = ?, send to me”

Primitives <Match, Action>

Match arbitrary bits in headers:

Header Data

Match: 1000x01xx0101001x

— Match on any header, or new header

— Allows any flow granularity

Action
— Forward to port(s), drop, send to controller
— Overwrite header with mask, push or pop
— Forward at specific bit-rate

Flow 1.

Flow 2.

Flow 3.

Flow N.

OpenFlow Rules

Rule _ —
[(exact & wildcard)][Action][Statistics

Rule _ —
[(exact & wildcard)][Action][Statistics

Rule _ —
[(exact & wildcard)][AGHON][Statistics

Rule Default Action Statistics

(exact & wildcard)

Exploit the flow table in switches, routers, and chipsets

Why 1s SDN happening now?

The Road to SDN

* Active Networking: 1990s
- First attempt make networks programmable

- Demultiplexing packets to software programs, network
virtualization, ...

* Control/Dataplane Separation: 2003-2007

- ForCes [IETF], RCP, 4D
[Princeton, CMU], SANE/Ethane
[Stanford/Berkeley]

- Open interfaces between data and control plane, logically
centralized control

* OpenFlow API & Network Oses: 2008

- OpenFlow switch interface [Stanford]
— NOX Network OS [Nicira]

N. Feamster et al., “The Road to SDN: An Intellectual History of Programmable
Networks”, ACM SIGCOMM CCR 2014.

SDN Drivers

Rise of merchant switching silicon

- Democratized switching
— Vendors eager to unseat incumbents

Cloud / Data centers
— Operators face real network management problems
- Extremely cost conscious; desire a lot of control

The right balance between vision & pragmatism
- OpenFlow compatible with existing hardware

A “killer app”: Network virtualization

Virtualization 1s Killer App for
SDN

Consider a multi-tenant datacenter
- Want to allow each tenant to specify virtual topology
- This defines their individual policies and requirements

Datacenter’s network hypervisor compiles these
virtual topologies into set of switch configurations

- Takes 1000s of individual tenant virtual topologies
- Computes configurations to implement all simultaneously

This is what people are paying money for....
- Enabled by SDN ’s ability to virtualize the network

Overview

* The Trio of modern networking
— SDN
— NFV

— Programmable switches

Network Functions Virtualisation

Classical Network Appliance Independent

Software Vendors

Approach

Appliance | | Appliance | | Appliance | | Appliance

Jr— T2 LI a2

ioa(Virtual 5 virtual |[OF Virtual >‘;(3;
Appliance Appliance Appliance

&P (ed (@
~ Orchestrated,

B automatic &
remote install.

Message
Router

Firewall Carrier Tester/QoE

Grade NAT - Standard High Volume Servers

Standard High Volume Storage

SGSN/GGSN PE Router BRAS Radio Access

Network Nodes

* Fragmented non-commodity hardware. Stdard Higolume
* Physical install per appliance per site. 2
* Hardware development large barrier to entry for new Ethernet Switches

vendors, constraining innovation & competition. Network Virtualisation
Approach

Motivation for programmable

1980s

1990s

routers

2000s

2010s

WFQ RED || STFQ || HPFQ | | AVQ RCP | | Flowlets SRPT DeTail FCP
CSFQ DRR XCP Heavy Hitters DCTCP CoDel PDQ
VirtualClock IntServ | DiffServ Bloom Filters ECN HULL PIE

* Network changes fast

* Need to extend the forwarding plane

e

History of Programmable Routers

Mini-computer based routers (1969-1990)
Active networks (Mid 1990)

Software routers (1999 — present)
— Click, RouteBricks, PacketShader

Software Defined Networking (2004— present)

Packet Forwarding Speeds

100000 - 3.ZI'b/S .
- —
10000 =
1000 < 50X v
= o
Gb/s 100§ =o=Switch Chip
(per chip) 7 «0=CPU
10 <
1:
01 - | | | I 1 I 1

1990 1995 2000 2005 2010 2015 2020

54

Conventional Wisdom:
“Programmable devices are 10-100x slower.
They consume much more power and area.”

Parser

IL2

Fixed-Function Switch Chips

Stage

ueues

56

Domain Specific Processors

Signal
Processing Graphics
A L
Compiler @% Compiler @%

GPU

Conventional wisdom said:
programmability too expensive

Then, someone 1dentified:
1. The right model for data-parallelism

2. Basic underlying processing primitives

Domain-specific processors were built

Domain-specific languages, compilers and tool-chains

Control Flow Graph

el 2 B

Control Flow

Graph Switch

Pipeline
\ C
- (- q
o B 2 .-..% 2 Queues
— 0 O)O 3 ™ ®)
3 N < < < <
= O © Be)
(D) :)
= = X X
LL LL > LL
Ll Ll | e

59

Fixed-Function Switch Chips Are
Limited

1. Can’t add new forwarding functionality

60

Fixed-Function Switch Chips

—m '

Control Flow

Graph Switch

)

Queues

\ Action/

Parser

\ Fixed Action
\ Fixed Action

\ Fixed Acti

[

[V
L

61

Fixed-Function Switch Chips Are

Limited

1. Can’t add new forwarding functionality

2. Can’t move resources between functions

FMxed -~
Action

Fixed
Action

Queues

1]
1]

62

Programmable Switch Chips

_Control Flow

Queues
63

0I0BI\ UONOY\

S1qeL YoreIN

JOIOBI\ UOHOV\
S1qeL YoreN

JOIOBI\ UOHOY\
S[qeL YoreN

JOIOBI\ UOHOV\
S1qeL YoreIN

(D)
o S
20
= Q
) O
i -
o
®
| -
O

ToSTR]

Mapping Control Flow to
Programmable Switch Chip.

Control Flow

Graph switch

Pipeling
r?:

Queues

Parser

IPv6 Table
L Action Madrp

,)\4 Action Macro

.

64

RMT: Reconfigurable Match +

Action
(Now more commonly called “PISA”)

PISA: Protocol Independent Switch Architecture

Match+Action

T
t

AAAAARA

-J--

AAAAARA

-J--

AAAAARA

-J--

AAARARAMA

g
5
—

IosIed
d[qewueIS0I]

(O

66

Match+Action

IosIeq
o[qewrueIS0IJ

Compiler &,

P4 Programming

I
t

AAAAARA

Ll

AAAAARA

--g--

-

AAAAAR

-J--

Match+Action

AAAAARA

-
£
(5]
>

I9sIed
d|qewweI301J

TTITTTIr e

P4 (http://p4.org/)

Match Action Control Flow

Control Flow

ueue

111

111
69

IIOIINANY T

GIOBJ UOHOY

JJBIA

OIOBIN UOHOY

01BN

XX NTANY T

GJOB|\ UOHOY

01BIA

GIOE\ UOHY
o|Ub

01BIA

TosTed

Summary

* Router architecture
* Software defined networking

* Programmable routers

