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Overview

• Switching hardware

• Software defined networking

• Programmable routers



Switching hardware



Software switch

• Packets cross the bus twice
– Half of the memory bus speed

• 133Mhz, 64-bit wide I/O bus à 4Gpbs
• Short packets reduce throughput
– 1Mpps, 64 bytes packet
– Throughput = 512 Mbps
– Shared by 10 ports: 51.2Mbps



Hardware switches

• Ports communicate with the outside world
– Eg, maintains VCI tables

• Switching fabric is simple and fast



Performance bottlenecks

• Input port
– Line speed: 2.48 Gbps
• 2.48x109/(64x8) = 4.83 Mpps

• Buffering
– Head of line blocking
–May limit throughput to only 59%
– Use output buffers or sophisticated buffer 

management algorithms to improve performance



Fabrics

• Shared bus
– The workstation switch

• Shared memory
– Input ports read packets to shared memory
– Output ports read them out to links



Fabrics

• Cross bar
– A matrix of pathways that can be configured to 

accept packets from all inputs at once



Fabrics
• Self routing
– a self-routing header 

added by the input 
port

–Most scalable
– Often built from 2x2 

switching units



An example of self-routing

• 3-bit numbers are self-routing headers
• Multiple 2x2 switching elements

– 0: upper output; 1: lower output



Software Defined Networking

Slides adapted from Mohammad 
Alizadeh (MIT)’s SDN lecture
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Outline

• Networking before SDN

• What is SDN? 

• OpenFlow basics

• Why is SDN happening now? (a brief history)
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Networking before SDN
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1 2

3

“If     , send to 3”
Data

“If a packet is going to B, 
then send it to output 3”

1. Figure out which routers and links are present.
2. Run Dijkstra’s algorithm to find shortest paths. 
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The Networking “Planes”
• Data plane: processing and delivery of packets with local forwarding 

state
– Forwarding state + packet header à forwarding decision
–Filtering, buffering, scheduling

• Control plane: computing the forwarding state in routers
– Determines how and where packets are forwarded
– Routing, traffic engineering, failure detection/recovery, …

• Management plane: configuring and tuning the network
–Traffic engineering, ACL config, device provisioning, 

…
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Timescales

Data Control Management

Time-
scale

Packet 
(nsec)

Event (10 
msec to sec)

Human (min 
to hours)

Location Linecard
hardware

Router 
software

Humans or 
scripts
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Data and Control Planes

Switching
Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane

control plane
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Data Plane
• Streaming algorithms on packets
–Matching on some header bits 
– Perform some actions

• Example: IP Forwarding

host host host

LAN 1

... host host host

LAN 2

...

router router routerWAN WAN

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9

1.2.3.0/24
5.6.7.0/24

forwarding table

1
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Control Plane

• Compute paths the packets will follow
– Populate forwarding tables
– Traditionally, a distributed protocol

• Example: Link-state routing (OSPF, IS-IS)
– Flood the entire topology to all nodes
– Each node computes shortest paths 
– Dijkstra’s algorithm

1
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Management Plane

• Traffic Engineering: setting the weights
– Inversely proportional to link capacity?
– Proportional to propagation delay?
– Network-wide optimization based on traffic?

3
2

2

1

1
3

1

4

5

3

3

2
0



Challenges
(Too) many task-specific control mechanisms

– No modularity, limited functionality

Indirect control
– Must invert protocol behavior, “coax” it to do what you want
– Ex. Changing weights instead of paths for TE

Uncoordinated control
– Cannot control which router updates first

Interacting protocols and mechanisms
– Routing, addressing, access control, QoS

The network is
• Hard to reason about
• Hard to evolve
• Expensive

2
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Example 1: Inter-domain Routing
• Today’s inter-domain routing protocol, BGP, 

artificially constrains routes
- Routing only on destination IP address blocks
- Can only influence immediate neighbors
- Very difficult to incorporate other information

• Application-specific peering
– Route video traffic one way, and non-video another

• Blocking denial-of-service traffic
– Dropping unwanted traffic further upstream

• Inbound traffic engineering
– Splitting incoming traffic over multiple peering links

2
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• Two locations, each with data center & 
front office

• All routers exchange routes over all links

R1 R2

R5

R4R3

Chicago (chi)

New York (nyc)Data Center Front Office

Example 2: Access Control
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R1 R2

R5

R4R3

Chicago (chi)

New York (nyc)Data Center

chi-DC
chi-FO

nyc-DC
nyc-FO

chi-D
C

chi-F
O

nyc-DC
nyc-FO

Front Office

Example 2: Access Control
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R1 R2

R5

R4R3

Data Center

chi-DC
chi-FO

nyc-DC
nyc-FO

chi-D
C

chi-F
O

nyc-DC
nyc-FO

Packet filter:
Drop nyc-FO -> *
Permit *

Packet filter:
Drop chi-FO -> *
Permit *

Front Office
chi

nyc

Example 2: Access Control
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• A new short-cut link added between data centers
• Intended for backup traffic between centers

R1 R2

R5

R4R3

Data Center

Packet filter:
Drop nyc-FO -> *
Permit *

Packet filter:
Drop chi-FO -> *
Permit *

Front Office
chi

nyc

Example 2: Access Control

2
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• Oops – new link lets packets violate access control policy!
• Routing changed, but
• Packet filters don’t update automatically

R1 R2

R5

R4R3

Data Center

Packet filter:
Drop nyc-FO -> *
Permit *

Packet filter:
Drop chi-FO -> *
Permit *

Front Office
chi

nyc

Example 2: Access Control
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Software Defined Network

A network in which the control plane is 
physically separate from the data plane.

and

A single (logically centralized) control plane 
controls several forwarding devices.

2
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Software Defined Network (SDN)

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Control

Control

Control

Control

Control

Global Network Map

Control Plane

Control
Program

Control
Program

Control
Program
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Entire backbone 

runs on SDN

A Major Trend in Networking

Bought for $1.2 billion 
(mostly cash)

3
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Custom Hardware

Custom Hardware

Custom Hardware

Custom Hardware

Custom Hardware

OS

OS

OS

OS

OS

Network OS

Feature Feature

How SDN Changes the Network

Feature Feature

Feature Feature

Feature Feature

Feature Feature

Feature Feature

3
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Control Program 1

Network OS

1. Open interface to packet 
forwarding

3. Consistent, up-to-date global network view2. At least one Network OS
probably many.

Open- and closed-source

Software Defined Network (SDN)

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Control Program 2

3
2
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Network OS

Network OS: distributed system that creates 

a consistent, up-to-date network view

– Runs on servers (controllers) in the network

– NOX, ONIX, Floodlight, Trema, OpenDaylight, 

HyperFlow, Kandoo, Beehive, Beacon, 

Maestro, … + more

Uses forwarding abstraction to:

– Get state information from forwarding 

elements

– Give control directives to forwarding elements

3
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Control Program A Control Program B

Network OS

Software Defined Network (SDN)

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

3
4



Control Program

Control program operates on view of network
– Input: global network view (graph/database)
– Output: configuration of each network device

Control program is not a distributed system
– Abstraction hides details of distributed state

3
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Forwarding Abstraction

Purpose: Standard way of defining 
forwarding state
– Flexible
• Behavior specified by control plane
• Built from basic set of forwarding primitives

– Minimal
• Streamlined for speed and low-power
• Control program not vendor-specific

• OpenFlow is an example of such an 
abstraction

3
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Network OS

Software Defined Network

3
7

Global Network View

Control Program
Virtual Topology

Network Hypervisor



Virtualization Simplifies Control Program

A

B

A

B

Abstract Network View

Global Network View

AàB 
drop

Hypervisor then inserts flow entries as needed

AàB 
drop

AàB 
drop

38



Does SDN Simplify the Network?

3
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Does SDN Simplify the Network?

Abstraction doesn’t eliminate complexity
- NOS, Hypervisor are still complicated pieces of code

SDN main achievements
- Simplifies interface for control program (user-specific)
- Pushes complexity into reusable code (SDN platform)

Just like compilers….

4
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OpenFlow Basics

4
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OpenFlow Protocol

Data Path (Hardware)

Control Path OpenFlowEthernet Switch

Network OS

Control Program A Control Program B

OpenFlow Basics

4
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Control Program A Control Program B

Network OS

OpenFlow Basics

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Flow
Table(s)

�If header = p, send to port 4�

�If header = ?, send to me�

�If header = q, overwrite header with r, 
add header s, and send to ports 5,6�

4
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Primitives <Match, Action>

Match arbitrary bits in headers:

– Match on any header, or new header
– Allows any flow granularity

Action
– Forward to port(s), drop, send to controller
– Overwrite header with mask, push or pop
– Forward at specific bit-rate

Header Data

Match: 1000x01xx0101001x



OpenFlow Rules

Exploit the flow table in switches, routers, and chipsets

Rule
(exact & wildcard) Action Statistics

Rule
(exact & wildcard) Action Statistics

Rule
(exact & wildcard) Action Statistics

Rule
(exact & wildcard) Default Action Statistics

Flow 1.

Flow 2.

Flow 3.

Flow N.



Why is SDN happening now?

4
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The Road to SDN
• Active Networking: 1990s

- First attempt make networks programmable
- Demultiplexing packets to software programs, network 

virtualization, …

• Control/Dataplane Separation: 2003-2007
- ForCes [IETF],                                                                    RCP, 4D 

[Princeton, CMU],                                                  SANE/Ethane 
[Stanford/Berkeley] 

- Open interfaces between data and control plane, logically 
centralized control

• OpenFlow API & Network Oses: 2008
- OpenFlow switch interface [Stanford]
- NOX Network OS [Nicira]

4
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Networks”, ACM SIGCOMM CCR 2014.



SDN Drivers
• Rise of merchant switching silicon

- Democratized switching
- Vendors eager to unseat incumbents 

• Cloud / Data centers
- Operators face real network management problems
- Extremely cost conscious; desire a lot of control

• The right balance between vision & pragmatism 
- OpenFlow compatible with existing hardware

• A “killer app”: Network virtualization

4
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Virtualization is Killer App for 
SDN

Consider a multi-tenant datacenter
- Want to allow each tenant to specify virtual topology
- This defines their individual policies and requirements

Datacenter’s network hypervisor compiles these 
virtual topologies into set of switch configurations

- Takes 1000s of individual tenant virtual topologies
- Computes configurations to implement all simultaneously

This is what people are paying money for….
- Enabled by SDN�s ability to virtualize the network



Overview

• The Trio of modern networking
– SDN
– NFV
– Programmable switches



Network Functions Virtualisation

Network Functions Virtualisation – Introductory White Paper Issue 1 
 

Page 5 of 16 
 

Introduction 
Network operators’ networks are populated with a large and increasing variety of proprietary 
hardware appliances. To launch a new network service often requires yet another variety and 
finding the space and power to accommodate these boxes is becoming increasingly difficult; 
compounded by the increasing costs of energy, capital investment challenges and the rarity of skills 
necessary to design, integrate and operate increasingly complex hardware-based appliances. 
Moreover, hardware-based appliances rapidly reach end of life, requiring much of the procure-
design-integrate-deploy cycle to be repeated with little or no revenue benefit. Worse, hardware 
lifecycles are becoming shorter as technology and services innovation accelerates, inhibiting the roll 
out of new revenue earning network services and constraining innovation in an increasingly 
network-centric connected world.  

Definition  
Network Functions Virtualisation aims to transform the way that network operators architect 
networks by evolving standard IT virtualisation technology to consolidate many network equipment 
types onto industry standard high volume servers, switches and storage, which could be located in 
Datacentres, Network Nodes and in the end user premises, as illustrated in Figure 1. It involves the 
implementation of network functions in software that can run on a range of industry standard server 
hardware, and that can be moved to, or instantiated in, various locations in the network as required, 
without the need for installation of new equipment.   

 
Figure 1: Vision for Network Functions Virtualisation 

Relationship with Software Defined Networks (SDN) 
As shown in Figure 2, Network Functions Virtualisation is highly complementary to Software Defined 
Networking (SDN), but not dependent on it (or vice-versa). Network Functions Virtualisation can be 
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Motivation for programmable 
routers

• Network changes fast
• Need to extend the forwarding plane

1980s 1990s 2000s 2010s

WFQ

VirtualClock

CSFQ

STFQ

Bloom	Filters

DRR

RED AVQ

XCP

RCP

CoDel

DeTail

DCTCP

HULL

SRPT

PIEIntServ DiffServ ECN

Flowlets

PDQ

HPFQ FCP

Heavy	Hitters

Figure 1-1: Timeline of prominent router algorithms since the 1980s. Only the ones shaded in blue
are available on the fastest routers today.

network operators and router vendors on a router’s feature set. Inevitably, there are network
operators whose needs fall outside their router’s feature set. But, because today’s fastest routers
are built out of specialized forwarding hardware, they are largely fixed-function2 devices, i.e., their
functionality cannot be changed once the router has been built. In such cases, the operator has
no alternative but to wait 2–3 years for the next generation of the router hardware. This is best
illustrated by the lag time between the standardization and availability of new overlay protocols [34].

As a result, the rate of innovation in new router algorithms is outstripping our ability to get these
algorithms into today’s fastest routers, i.e., routers with between 10 and 100 ports, each running at
between 10 and 100 Gbit/s. Figure 1-1 shows a timeline of prominent router algorithms that have
been developed since the 1980s. Of these, only a handful are available in the fastest routers today
because there is no way to program a new router algorithm on these routers.

Against this backdrop, if an operator wants to introduce new network functionality, what are her
choices? One is to give up on changing routers altogether and make all the required changes at the
end hosts. Relying solely on the end hosts, however, results in cumbersome or suboptimal solutions.
As a first example, imagine measuring the queueing latency at a particular hop in the network. One
could do this by collecting end-to-end ping measurements between a variety of vantage points
and then fusing these measurements together to estimate per-hop queueing latency—a process
commonly called network tomography. Not only is this indirect, it is also inaccurate relative to
directly instrumenting the router at that hop to measure its own queueing latency. As a second
example, consider the problem of congestion control, which divides up a network’s capacity fairly
among competing users. There are many in-network solutions to congestion control [139, 195],
which outperform the end-host-only approaches to congestion control used today [122, 198].
However, there is no way to deploy these in-network solutions using a fixed-function router today.

Another alternative is to use a software router: a catch-all term for a router built on top of
some programmable substrate, such as a general-purpose CPU [144, 103], a network processor,3 a
graphics processing unit (GPU) [123], or a field-programmable gate array (FPGA) [216]. Figure 1-2
tracks the evolution of aggregate capacity of software routers and compares them to the fastest
routers known at any point in time. The figure shows two trends. First, until the mid 1990s, software
routers were in fact the fastest routers; the early routers [126] were minicomputers loaded with
forwarding software. Second, since the mid 1990s, growing demands for higher link speeds, fueled

2The term fixed-function was first used to describe graphics processing units (GPUs) with limited or no programma-
bility [16]. We use it in an analogous sense here.

3A CPU with an instruction set tailored to packet processing [29, 26].
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History of Programmable Routers

• Mini-computer based routers (1969-1990)
• Active networks (Mid 1990)
• Software routers (1999 – present)
– Click, RouteBricks, PacketShader

• Software Defined Networking (2004– present)



Packet Forwarding Speeds

54

50x
Gb/s
(per chip)

3.2Tb/s



Conventional Wisdom: 
“Programmable devices are 10-100x slower.
They consume much more power and area.”



Fixed-Function Switch Chips

Queues
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Domain Specific Processors

GPU

Graphics

Compiler                  

Applications

DSP

Signal
Processing

Compiler                  

ApplicationsMy codec My renderer



Conventional wisdom said: 
programmability too expensive

Then, someone identified:
1. The right model for data-parallelism
2. Basic underlying processing primitives

Domain-specific processors were built
Domain-specific languages, compilers and tool-chains 



Control Flow Graph
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Fixed-Function Switch Chips  Are 
Limited

1. Can’t add new forwarding functionality
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Fixed-Function Switch Chips
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Fixed-Function Switch Chips  Are 
Limited

1. Can’t add new forwarding functionality
2. Can’t move resources between functions
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Control Flow 
Graph Switch 

Pipeline

Programmable Switch Chips
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Mapping Control Flow to 
Programmable Switch Chip.
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RMT: Reconfigurable Match + 
Action

(Now more commonly called “PISA”)
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PISA: Protocol Independent Switch Architecture
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P4 Programming
P4 code
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P4 (http://p4.org/)

parser parse_ethernet {
extract(ethernet);

select(latest.etherType) 
{

0x800  : parse_ipv4;
0x86DD : parse_ipv6;

}
}

table ipv4_lpm {
reads {

ipv4.dstAddr :    
lpm;

}
actions {

set_next_hop;
drop;    

}
}

control ingress 
{

apply(l2_table);
if (valid(ipv4)) {

apply(ipv4_table);
}
if (valid(ipv6)) {

apply(ipv6_table);
}
apply (acl);

}
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Control Flow 
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Summary

• Router architecture

• Software defined networking

• Programmable routers


