
CS 356: Computer Network
Architectures

Lecture 26: Router hardware,
Software defined networking, and

programmable routers

[PD] chapter 3.4
Xiaowei Yang

xwy@cs.duke.edu

Overview

• Switching hardware

• Software defined networking

• Programmable routers

Switching hardware

Software switch

• Packets cross the bus twice
– Half of the memory bus speed

• 133Mhz, 64-bit wide I/O bus à 4Gpbs
• Short packets reduce throughput
– 1Mpps, 64 bytes packet
– Throughput = 512 Mbps
– Shared by 10 ports: 51.2Mbps

Hardware switches

• Ports communicate with the outside world
– Eg, maintains VCI tables

• Switching fabric is simple and fast

Performance bottlenecks

• Input port
– Line speed: 2.48 Gbps
• 2.48x109/(64x8) = 4.83 Mpps

• Buffering
– Head of line blocking
–May limit throughput to only 59%
– Use output buffers or sophisticated buffer

management algorithms to improve performance

Fabrics

• Shared bus
– The workstation switch

• Shared memory
– Input ports read packets to shared memory
– Output ports read them out to links

Fabrics

• Cross bar
– A matrix of pathways that can be configured to

accept packets from all inputs at once

Fabrics
• Self routing
– a self-routing header

added by the input
port

–Most scalable
– Often built from 2x2

switching units

An example of self-routing

• 3-bit numbers are self-routing headers
• Multiple 2x2 switching elements

– 0: upper output; 1: lower output

Software Defined Networking

Slides adapted from Mohammad
Alizadeh (MIT)’s SDN lecture

11

Outline

• Networking before SDN

• What is SDN?

• OpenFlow basics

• Why is SDN happening now? (a brief history)

1
2

Networking before SDN

1
3

1 2

3

“If , send to 3”
Data

“If a packet is going to B,
then send it to output 3”

1. Figure out which routers and links are present.
2. Run Dijkstra’s algorithm to find shortest paths.

1
4

The Networking “Planes”
• Data plane: processing and delivery of packets with local forwarding

state
– Forwarding state + packet header à forwarding decision
–Filtering, buffering, scheduling

• Control plane: computing the forwarding state in routers
– Determines how and where packets are forwarded
– Routing, traffic engineering, failure detection/recovery, …

• Management plane: configuring and tuning the network
–Traffic engineering, ACL config, device provisioning,

…

1
5

Timescales

Data Control Management

Time-
scale

Packet
(nsec)

Event (10
msec to sec)

Human (min
to hours)

Location Linecard
hardware

Router
software

Humans or
scripts

1
6

Data and Control Planes

Switching
Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane

control plane

1
7

Data Plane
• Streaming algorithms on packets
–Matching on some header bits
– Perform some actions

• Example: IP Forwarding

host host host

LAN 1

... host host host

LAN 2

...

router router routerWAN WAN

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9

1.2.3.0/24
5.6.7.0/24

forwarding table

1
8

Control Plane

• Compute paths the packets will follow
– Populate forwarding tables
– Traditionally, a distributed protocol

• Example: Link-state routing (OSPF, IS-IS)
– Flood the entire topology to all nodes
– Each node computes shortest paths
– Dijkstra’s algorithm

1
9

Management Plane

• Traffic Engineering: setting the weights
– Inversely proportional to link capacity?
– Proportional to propagation delay?
– Network-wide optimization based on traffic?

3
2

2

1

1
3

1

4

5

3

3

2
0

Challenges
(Too) many task-specific control mechanisms

– No modularity, limited functionality

Indirect control
– Must invert protocol behavior, “coax” it to do what you want
– Ex. Changing weights instead of paths for TE

Uncoordinated control
– Cannot control which router updates first

Interacting protocols and mechanisms
– Routing, addressing, access control, QoS

The network is
• Hard to reason about
• Hard to evolve
• Expensive

2
1

Example 1: Inter-domain Routing
• Today’s inter-domain routing protocol, BGP,

artificially constrains routes
- Routing only on destination IP address blocks
- Can only influence immediate neighbors
- Very difficult to incorporate other information

• Application-specific peering
– Route video traffic one way, and non-video another

• Blocking denial-of-service traffic
– Dropping unwanted traffic further upstream

• Inbound traffic engineering
– Splitting incoming traffic over multiple peering links

2
2

• Two locations, each with data center &
front office

• All routers exchange routes over all links

R1 R2

R5

R4R3

Chicago (chi)

New York (nyc)Data Center Front Office

Example 2: Access Control

2
3

R1 R2

R5

R4R3

Chicago (chi)

New York (nyc)Data Center

chi-DC
chi-FO

nyc-DC
nyc-FO

chi-D
C

chi-F
O

nyc-DC
nyc-FO

Front Office

Example 2: Access Control

2
4

R1 R2

R5

R4R3

Data Center

chi-DC
chi-FO

nyc-DC
nyc-FO

chi-D
C

chi-F
O

nyc-DC
nyc-FO

Packet filter:
Drop nyc-FO -> *
Permit *

Packet filter:
Drop chi-FO -> *
Permit *

Front Office
chi

nyc

Example 2: Access Control

2
5

• A new short-cut link added between data centers
• Intended for backup traffic between centers

R1 R2

R5

R4R3

Data Center

Packet filter:
Drop nyc-FO -> *
Permit *

Packet filter:
Drop chi-FO -> *
Permit *

Front Office
chi

nyc

Example 2: Access Control

2
6

• Oops – new link lets packets violate access control policy!
• Routing changed, but
• Packet filters don’t update automatically

R1 R2

R5

R4R3

Data Center

Packet filter:
Drop nyc-FO -> *
Permit *

Packet filter:
Drop chi-FO -> *
Permit *

Front Office
chi

nyc

Example 2: Access Control

2
7

Software Defined Network

A network in which the control plane is
physically separate from the data plane.

and

A single (logically centralized) control plane
controls several forwarding devices.

2
8

Software Defined Network (SDN)

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Control

Control

Control

Control

Control

Global Network Map

Control Plane

Control
Program

Control
Program

Control
Program

2
9

Entire backbone

runs on SDN

A Major Trend in Networking

Bought for $1.2 billion
(mostly cash)

3
0

Custom Hardware

Custom Hardware

Custom Hardware

Custom Hardware

Custom Hardware

OS

OS

OS

OS

OS

Network OS

Feature Feature

How SDN Changes the Network

Feature Feature

Feature Feature

Feature Feature

Feature Feature

Feature Feature

3
1

3
1

Control Program 1

Network OS

1. Open interface to packet
forwarding

3. Consistent, up-to-date global network view2. At least one Network OS
probably many.

Open- and closed-source

Software Defined Network (SDN)

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Control Program 2

3
2

3
2

Network OS

Network OS: distributed system that creates

a consistent, up-to-date network view

– Runs on servers (controllers) in the network

– NOX, ONIX, Floodlight, Trema, OpenDaylight,

HyperFlow, Kandoo, Beehive, Beacon,

Maestro, … + more

Uses forwarding abstraction to:

– Get state information from forwarding

elements

– Give control directives to forwarding elements

3
3

Control Program A Control Program B

Network OS

Software Defined Network (SDN)

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

3
4

Control Program

Control program operates on view of network
– Input: global network view (graph/database)
– Output: configuration of each network device

Control program is not a distributed system
– Abstraction hides details of distributed state

3
5

Forwarding Abstraction

Purpose: Standard way of defining
forwarding state
– Flexible
• Behavior specified by control plane
• Built from basic set of forwarding primitives

– Minimal
• Streamlined for speed and low-power
• Control program not vendor-specific

• OpenFlow is an example of such an
abstraction

3
6

Network OS

Software Defined Network

3
7

Global Network View

Control Program
Virtual Topology

Network Hypervisor

Virtualization Simplifies Control Program

A

B

A

B

Abstract Network View

Global Network View

AàB
drop

Hypervisor then inserts flow entries as needed

AàB
drop

AàB
drop

38

Does SDN Simplify the Network?

3
9

Does SDN Simplify the Network?

Abstraction doesn’t eliminate complexity
- NOS, Hypervisor are still complicated pieces of code

SDN main achievements
- Simplifies interface for control program (user-specific)
- Pushes complexity into reusable code (SDN platform)

Just like compilers….

4
0

OpenFlow Basics

4
1

OpenFlow Protocol

Data Path (Hardware)

Control Path OpenFlowEthernet Switch

Network OS

Control Program A Control Program B

OpenFlow Basics

4
2

Control Program A Control Program B

Network OS

OpenFlow Basics

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Flow
Table(s)

�If header = p, send to port 4�

�If header = ?, send to me�

�If header = q, overwrite header with r,
add header s, and send to ports 5,6�

4
3

Primitives <Match, Action>

Match arbitrary bits in headers:

– Match on any header, or new header
– Allows any flow granularity

Action
– Forward to port(s), drop, send to controller
– Overwrite header with mask, push or pop
– Forward at specific bit-rate

Header Data

Match: 1000x01xx0101001x

OpenFlow Rules

Exploit the flow table in switches, routers, and chipsets

Rule
(exact & wildcard) Action Statistics

Rule
(exact & wildcard) Action Statistics

Rule
(exact & wildcard) Action Statistics

Rule
(exact & wildcard) Default Action Statistics

Flow 1.

Flow 2.

Flow 3.

Flow N.

Why is SDN happening now?

4
6

The Road to SDN
• Active Networking: 1990s

- First attempt make networks programmable
- Demultiplexing packets to software programs, network

virtualization, …

• Control/Dataplane Separation: 2003-2007
- ForCes [IETF], RCP, 4D

[Princeton, CMU], SANE/Ethane
[Stanford/Berkeley]

- Open interfaces between data and control plane, logically
centralized control

• OpenFlow API & Network Oses: 2008
- OpenFlow switch interface [Stanford]
- NOX Network OS [Nicira]

4
7

N. Feamster et al., “The Road to SDN: An Intellectual History of Programmable
Networks”, ACM SIGCOMM CCR 2014.

SDN Drivers
• Rise of merchant switching silicon

- Democratized switching
- Vendors eager to unseat incumbents

• Cloud / Data centers
- Operators face real network management problems
- Extremely cost conscious; desire a lot of control

• The right balance between vision & pragmatism
- OpenFlow compatible with existing hardware

• A “killer app”: Network virtualization

4
8

Virtualization is Killer App for
SDN

Consider a multi-tenant datacenter
- Want to allow each tenant to specify virtual topology
- This defines their individual policies and requirements

Datacenter’s network hypervisor compiles these
virtual topologies into set of switch configurations

- Takes 1000s of individual tenant virtual topologies
- Computes configurations to implement all simultaneously

This is what people are paying money for….
- Enabled by SDN�s ability to virtualize the network

Overview

• The Trio of modern networking
– SDN
– NFV
– Programmable switches

Network Functions Virtualisation

Network Functions Virtualisation – Introductory White Paper Issue 1

Page 5 of 16

Introduction
Network operators’ networks are populated with a large and increasing variety of proprietary
hardware appliances. To launch a new network service often requires yet another variety and
finding the space and power to accommodate these boxes is becoming increasingly difficult;
compounded by the increasing costs of energy, capital investment challenges and the rarity of skills
necessary to design, integrate and operate increasingly complex hardware-based appliances.
Moreover, hardware-based appliances rapidly reach end of life, requiring much of the procure-
design-integrate-deploy cycle to be repeated with little or no revenue benefit. Worse, hardware
lifecycles are becoming shorter as technology and services innovation accelerates, inhibiting the roll
out of new revenue earning network services and constraining innovation in an increasingly
network-centric connected world.

Definition
Network Functions Virtualisation aims to transform the way that network operators architect
networks by evolving standard IT virtualisation technology to consolidate many network equipment
types onto industry standard high volume servers, switches and storage, which could be located in
Datacentres, Network Nodes and in the end user premises, as illustrated in Figure 1. It involves the
implementation of network functions in software that can run on a range of industry standard server
hardware, and that can be moved to, or instantiated in, various locations in the network as required,
without the need for installation of new equipment.

Figure 1: Vision for Network Functions Virtualisation

Relationship with Software Defined Networks (SDN)
As shown in Figure 2, Network Functions Virtualisation is highly complementary to Software Defined
Networking (SDN), but not dependent on it (or vice-versa). Network Functions Virtualisation can be

51

Motivation for programmable
routers

• Network changes fast
• Need to extend the forwarding plane

1980s 1990s 2000s 2010s

WFQ

VirtualClock

CSFQ

STFQ

Bloom	Filters

DRR

RED AVQ

XCP

RCP

CoDel

DeTail

DCTCP

HULL

SRPT

PIEIntServ DiffServ ECN

Flowlets

PDQ

HPFQ FCP

Heavy	Hitters

Figure 1-1: Timeline of prominent router algorithms since the 1980s. Only the ones shaded in blue
are available on the fastest routers today.

network operators and router vendors on a router’s feature set. Inevitably, there are network
operators whose needs fall outside their router’s feature set. But, because today’s fastest routers
are built out of specialized forwarding hardware, they are largely fixed-function2 devices, i.e., their
functionality cannot be changed once the router has been built. In such cases, the operator has
no alternative but to wait 2–3 years for the next generation of the router hardware. This is best
illustrated by the lag time between the standardization and availability of new overlay protocols [34].

As a result, the rate of innovation in new router algorithms is outstripping our ability to get these
algorithms into today’s fastest routers, i.e., routers with between 10 and 100 ports, each running at
between 10 and 100 Gbit/s. Figure 1-1 shows a timeline of prominent router algorithms that have
been developed since the 1980s. Of these, only a handful are available in the fastest routers today
because there is no way to program a new router algorithm on these routers.

Against this backdrop, if an operator wants to introduce new network functionality, what are her
choices? One is to give up on changing routers altogether and make all the required changes at the
end hosts. Relying solely on the end hosts, however, results in cumbersome or suboptimal solutions.
As a first example, imagine measuring the queueing latency at a particular hop in the network. One
could do this by collecting end-to-end ping measurements between a variety of vantage points
and then fusing these measurements together to estimate per-hop queueing latency—a process
commonly called network tomography. Not only is this indirect, it is also inaccurate relative to
directly instrumenting the router at that hop to measure its own queueing latency. As a second
example, consider the problem of congestion control, which divides up a network’s capacity fairly
among competing users. There are many in-network solutions to congestion control [139, 195],
which outperform the end-host-only approaches to congestion control used today [122, 198].
However, there is no way to deploy these in-network solutions using a fixed-function router today.

Another alternative is to use a software router: a catch-all term for a router built on top of
some programmable substrate, such as a general-purpose CPU [144, 103], a network processor,3 a
graphics processing unit (GPU) [123], or a field-programmable gate array (FPGA) [216]. Figure 1-2
tracks the evolution of aggregate capacity of software routers and compares them to the fastest
routers known at any point in time. The figure shows two trends. First, until the mid 1990s, software
routers were in fact the fastest routers; the early routers [126] were minicomputers loaded with
forwarding software. Second, since the mid 1990s, growing demands for higher link speeds, fueled

2The term fixed-function was first used to describe graphics processing units (GPUs) with limited or no programma-
bility [16]. We use it in an analogous sense here.

3A CPU with an instruction set tailored to packet processing [29, 26].

14

History of Programmable Routers

• Mini-computer based routers (1969-1990)
• Active networks (Mid 1990)
• Software routers (1999 – present)
– Click, RouteBricks, PacketShader

• Software Defined Networking (2004– present)

Packet Forwarding Speeds

54

50x
Gb/s
(per chip)

3.2Tb/s

Conventional Wisdom:
“Programmable devices are 10-100x slower.
They consume much more power and area.”

Fixed-Function Switch Chips

Queues
L2

Stage
IPv4
StagePa

rs
er IPv6

Stage
ACL
Stage

L3
L2

Pa
ck

et

Pa
ck

et

56

Domain Specific Processors

GPU

Graphics

Compiler

Applications

DSP

Signal
Processing

Compiler

ApplicationsMy codec My renderer

Conventional wisdom said:
programmability too expensive

Then, someone identified:
1. The right model for data-parallelism
2. Basic underlying processing primitives

Domain-specific processors were built
Domain-specific languages, compilers and tool-chains

Control Flow Graph

Queues
L2

Stage
IPv4
StagePa

rs
er IPv6

Stage
ACL
StageL2

 T
ab

le

IP
v4

 T
ab

le

IP
v6

Ta

bl
e

A
C

L
Ta

bl
e

L2
v4

v6
ACL

Control Flow
Graph Switch

Pipeline

Fi
xe

d
Ac

tio
n

Fi
xe

d
Ac

tio
n

Ac
tio

n

Fi
xe

d
Ac

tio
n

59

Fixed-Function Switch Chips Are
Limited

1. Can’t add new forwarding functionality

60

Fixed-Function Switch Chips

Queues
L2

Stage
IPv4
StagePa

rs
er IPv6

Stage
ACL
StageL2

 T
ab

le

IP
v4

 T
ab

le

IP
v6

Ta

bl
e

A
C

L
Ta

bl
e

Fi
xe

d
Ac

tio
n

Fi
xe

d
Ac

tio
n

Ac
tio

n

Fi
xe

d
Ac

tio
n

L2
v4

v6
ACL

Control Flow
Graph Switch

Pipeline

MyEn
cap

MyEn
cap

61

62

Fixed-Function Switch Chips Are
Limited

1. Can’t add new forwarding functionality
2. Can’t move resources between functions

QueuesL2
Stag

e

IPv
4Sta
gePa

rs
er

IPv
6

Stag
e

AC
L

Stag
e

Fi
xe

d
A

ct
io

n

Fi
xe

d
A

ct
io

n

A
ct

io n

L2
 T

ab
le

Fi
xe

d
A

ct
io

n

IP
v4

 T
ab

le

IP
v6

Ta

bl
e

A
C

L
Ta

bl
e

Control Flow
Graph Switch

Pipeline

Programmable Switch Chips

Queues

Pa
rs

er

Fi
xe

d
A

ct
io

n

Fi
xe

d
A

ct
io

n

Fi
xe

d
A

ct
io

n

L2
 T

ab
le

Fi
xe

d
A

ct
io

n

IP
v4

 T
ab

le

IP
v6

 T
ab

le

A
C

L
Ta

bl
e

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

L2
v4

v6
ACL

Ac
tio

n
M

ac
ro

Ac
tio

n
M

ac
ro

Ac
tio

n
M

ac
ro

Ac
tio

n
M

ac
ro

63

M
at

ch
 T

ab
le

Ac
tio

n
M

ac
ro

Mapping Control Flow to
Programmable Switch Chip.

Queues

Pa
rs

er

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

L2
 T

ab
le

IP
v4

 T
ab

le

IP
v6

 T
ab

le

A
C

L
Ta

bl
e

Ac
tio

n
M

ac
ro

Ac
tio

n
M

ac
ro

Ac
tio

n
M

ac
ro

L2
v4

v6
ACL

Control Flow
Graph Switch

Pipeline

L2
v6

ACL
v4

L2
 A

ct
io

n
M

ac
ro

v4
 A

ct
io

n
M

ac
ro

v6
 A

ct
io

n

AC
L

Ac
tio

n
M

ac
ro

64

RMT: Reconfigurable Match +
Action

(Now more commonly called “PISA”)

65

PISA: Protocol Independent Switch Architecture

66

Pr
og

ra
m

m
ab

le
Pa

rs
er

Memory

Match+Action

ALU

Pr
og
ra
m
m
ab
le

Pa
rs
er

Match+Action

P4 Programming
P4 code

Compiler

Pr
og

ra
m

m
ab

le
Pa

rs
er

Memory

Match+Action

ALU

Queues

Pa
rs

er

Fi
xe

d
A

ct
io

n

Fi
xe

d
A

ct
io

n

Fi
xe

d
A

ct
io

n

L2
 T

ab
le

Fi
xe

d
A

ct
io

n

IP
v4

 T
ab

le

IP
v6

 T
ab

le

A
C

L
Ta

bl
e

M
at

ch

Ta
bl

e

M
at

ch

Ta
bl

e

M
at

ch

Ta
bl

e

M
at

ch

Ta
bl

e

P4 (http://p4.org/)

parser parse_ethernet {
extract(ethernet);

select(latest.etherType)
{

0x800 : parse_ipv4;
0x86DD : parse_ipv6;

}
}

table ipv4_lpm {
reads {

ipv4.dstAddr :
lpm;

}
actions {

set_next_hop;
drop;

}
}

control ingress
{

apply(l2_table);
if (valid(ipv4)) {

apply(ipv4_table);
}
if (valid(ipv6)) {

apply(ipv6_table);
}
apply (acl);

}

L
2

v
4v6

AC
L

Ac
tio

n
M

ac
ro

Ac
tio

n
M

ac
ro

Ac
tio

n
M

ac
ro

Ac
tio

n
M

ac
ro

69

Parser
Match Action

Tables
Control Flow
Graph

Summary

• Router architecture

• Software defined networking

• Programmable routers

