CcompSci 356 Computer Network Architecture Lecture 27: A brief introduction to Quality of Service and Final review

Xiaowei Yang xwy@,cs.duke.edu

Overview

• Introduction to Quality of Service (30 mins)

• Review (30 mins)

• Pop quiz (~10 mins)

Course evaluation (~5 mins)

Internet Quality of Service [PD] Chapter 6.5

Internet Quality of Service

Motivation

- Internet currently provides one single class of "best-effort" service
 - No assurance about delivery
- Many existing applications are *elastic*
 - Tolerate delays and losses
 - Can adapt to congestion
- "Real-time" applications may be inelastic

Inelastic Applications

- Continuous media applications
 - Lower and upper limit on acceptable performance
 - Below which video and audio are not intelligible
 - Internet telephones, teleconferencing with high delay (200 300ms) impair human interactions
- Hard real-time applications
 - Require hard limits on performance
 - E.g., industrial control applications
 - Internet surgery

Design question #1: Why a New Service Model?

- What is the **basic objective** of network design?
 - Maximize total bandwidth? Minimize latency? Maximize ISP's revenues?
 - the designer's choice: Maximize social welfare: the total utility given to users (why not profit?)
- What does utility vs. bandwidth look like?
 - Must be non-decreasing function
 - Shape depends on application

Utility Curve Shapes

Stay to the right and you are fine for all curves

Playback Applications

- Sample signal → packetize → transmit → buffer → playback
 - Fits most multimedia applications
- Performance concern:
 - Jitter: variation in end-to-end delay
 - Delay = fixed + variable = (propagation + packetization) + queuing
- Solution:
 - Playback point delay introduced by buffer to hide network jitter

Characteristics of Playback Applications

• In general lower delay is preferable

 Doesn't matter when packet arrives as long as it is before playback point

• Network guarantees (e.g., bound on jitter) would make it easier to set playback point

Applications can tolerate some loss

Applications Variations

- Rigid and adaptive applications
 - Delay adaptive
 - Rigid: set fixed playback point
 - Adaptive: adapt playback point
 - E.g. Shortening silence for voice applications
 - Rate adaptive

- Loss tolerant and intolerant applications
- Four combinations

Applications Variations

Really only two classes of applications

- 1) Intolerant and rigid
- 2) Tolerant and adaptive

Other combinations make little sense

- 3) Intolerant and adaptive
 - Cannot adapt without interruption
- 4) Tolerant and rigid
 - Missed opportunity to improve delay

Design question 2: How to maximize $V = \sum U(s_i)$

• Choice #1: add more pipes

- Choice #2: fix the bandwidth but offer different services
 - Q: can differentiated services improve V?

If all users' utility functions are elastic

Does equal allocation of bandwidth maximize total utility?

- $\sum s_i = B$
- Max $\sum U(s_i)$

Design question: is Admission Control needed?

- If U(bandwidth) is concave
 - → elastic applications
 - Incremental utility is decreasing with increasing bandwidth
 - $U(x) = log(x^p)$
 - $V = nlog(B/n)^p = log B^p n^{1-p}$
 - Is always advantageous to have more flows with lower bandwidth
 - No need of admission control;

This is why the Internet works! And fairness makes sense

Utility Curves – Inelastic traffic

Does equal allocation of bandwidth maximize total utility?

Is Admission Control needed?

- If U is convex → inelastic applications
 - U(number of flows) is no longer monotonically increasing
 - Need admission control to maximize total utility
- Admission control → deciding when the addition of new people would result in reduction of utility
 - Basically avoids overload

Incentives

- Who should be given what service?
 - Users have incentives to cheat
 - Pricing seems to be a reasonable choice
 - But usage-based charging may not be well received by users

Over provisioning

- Pros: simple
- Cons
 - Not cost effective
 - Bursty traffic leads to a high peak/average ratio
 - E.g., normal users versus leading edge users
 - It might be easier to block heavy users

Comments

- End-to-end QoS has not happened
- Why?
- Can you think of any mechanism to make it happen?

Approaches to QoS

- Fine-grained:
 - Integrated services
 - RSVP
- Coarse-grained:
 - Differentiated services

Review

What this course is about?

- Computer network architecture
- "Architecture is both the process and the product of <u>planning</u>, <u>designing</u>, and <u>constructing</u> buildings and other physical structures."
- "Architectural works, in the material form of <u>buildings</u>, are often perceived as cultural symbols and as <u>works of art</u>."
- https://en.wikipedia.org/wiki/Architecture

• CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22 556189

• By Dhirad, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=113235

• By Livioandronico2013 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=54 296849

What is "network architecture"

• "Network architecture is the design of a communication network."

• "It is a framework for the specification of a network's <u>physical components</u> and their functional organization and configuration, its operational principles and procedures, as well as <u>data formats</u> use."

What I hope to teach

- The Internet architecture as an example of network architectures
 - Teach by examples

- Computer networks are just one type of computer systems
 - Share similar design principles

Challenges and solutions

- Complexity
 - Large number of components
 - Large number of interconnections
 - Many irregularities
 - Parties of conflicting interests
 - **—** ...
- Coping with complexity
 - Modularity, abstraction, layering, and hierarchy

What the Internet looks like

Unique challenges faced by a communication network

- Scalability: how to support a large number of components
- Reliability: how to obtain reliable delivery from unreliable components
- Performance: low latency, high throughput
- Resource sharing among multiple users
- Routing and addressing

Functions/Concepts at different layers

Application protocols vs Applications

Reliable transport, multiplexing

Forwarding, Routing, Addressing

Encoding, framing, error detection, reliability media sharing, switching

Bandwidth, latency, throughput, delay-bandwidth product

Physical properties of a link

Bandwidth

- Bandwidth of a link refers to the number of bits it can transmit in a unit time
 - A second of time as distance
 - Each bit as a pulse of width
- Fast link
- Slow link

Latency to transmit a packet

- Has four components
 - Link propagation delay
 - Transmission/serialization latency
 - Queuing delay
 - Processing delay (often ignored)

Round trip time (RTT)

• Time to send a packet and receive an acknowledgement

How to determine the "optimal" sliding window size

• What does "keep the pipe full" mean?

Mechanisms at Different layers

- Link layer
 - Encoding
 - NRZ, NRZI, Manchester, 4B/5B
 - Framing
 - Byte-oriented, bit-oriented, time-based
 - Bit stuffing
 - Error detection
 - Parity, checksum, CRC
 - Reliability
 - FEC, sliding window

Link layer continued

- Multi-access link
 - Ethernet
 - Collision Sense Multiple Access/Collision Detection (CSMA/CD)
 - WIFI
 - Carrier-sense multiple access with collision avoidance (CSMA/CA)
 - Cannot send and receive at the same time
 - Must send when channel is idle
 - RTS/CTS

Link layer continued

- Virtual circuit switching
 - ATM

- Datagram switching
 - Ethernet learning bridges
 - Spanning tree algorithm
- Source routing

The network layer

The Internet Protocol

- Classless Interdomain Routing (CIDR)
 - Addressing format
 - Subnet, network prefix

- Forwarding
 - Longest prefix matching

The network layer continued

- Routing
 - Distance vector
 - Link state
 - BGP

- Auxiliary functions
 - ARP, ICMP, DHCP, NAT, IP Tunnel

Multicast

The transport layer

UDP

Datagram, connectionless, multiplexing multiple applications

• TCP

Reliable, byte stream

TCP

Connection establishment

- Reliability
 - Sliding window
 - Loss recovery
 - Time out, duplicate acks, selective ACKs
- Flow control
- Congestion control and avoidance

TCP congestion control

- 1. Probing for the available bandwidth
 - slow start (cwnd < ssthresh)

- 2. Avoid overloading the network
 - congestion avoidance (cwnd >= ssthresh)

Slow Start

- Initial value: Set cwnd = 1 MSS
 - Modern TCP implementation may set initial cwnd to 2
- When receiving an ACK, cwnd+= 1 MSS
 - If an ACK acknowledges two segments, cwnd is still increased by only 1 segment.
 - Even if ACK acknowledges a segment that is smaller than MSS bytes long, cwnd is increased by 1.
 - Question: how can you accelerate your TCP download?

Congestion Avoidance

- If cwnd >= ssthresh then each time an ACK is received, increment cwnd as follows:
 - cwnd += MSS * (MSS / cwnd) (cwnd measured in bytes)
- So *cwnd* is increased by one MSS only if all *cwnd*/MSS segments have been acknowledged.

Slow Start

- Initial value: Set cwnd = 1 MSS
 - Modern TCP implementation may set initial cwnd to 2
- When receiving an ACK, cwnd+= 1 MSS
 - If an ACK acknowledges two segments, cwnd is still increased by only 1 segment.
 - Even if ACK acknowledges a segment that is smaller than MSS bytes long, cwnd is increased by 1.
 - Question: how can you accelerate your TCP download?

Congestion Avoidance

- If cwnd >= ssthresh then each time an ACK is received, increment cwnd as follows:
 - cwnd += MSS * (MSS / cwnd) (cwnd measured in bytes)
- So *cwnd* is increased by one MSS only if all *cwnd*/MSS segments have been acknowledged.

TCP congestion control modeling

$$x_i(t+1)$$

$$= \begin{cases} a_1 + b_1 x_i(t) & \text{if } y(t) = 0 \Rightarrow \text{Increase,} \\ a_D + b_D x_i(t) & \text{if } y(t) = 1 \Rightarrow \text{Decrease.} \end{cases}$$

- Four sample types of controls
- AIAD, AIMD, MIAD, MIMD

Phase plot

Application layer

Domain Name System (DNS)

Socket interface

- Application protocols vs applications
 - Email

Overlay networks

Figure out the DNS server hierarchy

• dig +norecurse @a.root-servers.net NS www.cnn.com

- https://ns1.com/articles/using-dig-trace
- dig +trace <u>www.cnn.com</u>
- dig +trace turner-tls.map.fastly.net.

Looking forward

- Graduate networking class
 - Datacenter networking
 - Future Internet architectures
 - SDN, NFV

What to expect in the final

- Networking knowledge
 - Short questions, true or false questions
 - Computation questions

- Application of networking knowledge
 - Design knowledge

Pop quiz and course evaluation