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© The Meaning of Image Differentiation
® A Conceptual Pipeline

® Implementation

O The Derivatives of a 2D Gaussian

0O The Image Gradient
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Values

L eramctonmic |
What Does Differentiating an Image Mean?

Derivatives in x
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. TheMemngofimageDiflerentaton
What Does Differentiating an Image Mean?
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A Conceptual Pipeline
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e Somehow reconstruct the continuous sensor irradiance C

from the discrete image array /
Differentiate C to obtain D
Sample the derivatives D back to the pixel grid
Each would be hard to implement

Surprisingly, the cascade turns out to be easy!
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[ AcComoptmiPipsine |
From Discrete Array to Sensor Irradiance
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What would the transformation from /to C look like formally, ?(J ) d (&)
if we could find one? Example: Linear mterpolatlon
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e
Linear Interpolation as a Hybrid Convolution

Clx,y) =2 e 2o )P = foy =)

W 2D
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Gaussian Instead of Triangle {
¢ Noise =-: fit rather than interpolating
¢ Noise =-: filter with a truncated Gaussian (
° P(x,y) = Gx.y)x &%
) Oo .
CCQC—(J> ZZZ I(C;J)G<x'é!i’L§
¢ =~00 é ~-0o
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L iwtwam
Differentiating

C(x, ) 0 D(x, y) 1(r, ¢)

I(r. ¢) () o
~ ox

Clx.y) =20 o 2o I ))G(X = fy =)
(still don’t know how to do this, just plow ahead)

= D(x.y) = L(xy) = &7 S MG~y —i)
D(x.y) = 2F 5 JNCX iy~ /\_

e We transferred the differentiation to G,

and we know how to do that!
(still don’t know how to implement a hybrid convolution)
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Sampling
/ﬂ
I(r, ) ~  |Ckx ) 0 D(x, L5 ¢)

&) { !
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D(X.y) = 3% o S M) Gelx —foy — i)
e We are interested in the values of D(x, y) on the integer
gridi x —candy — r

=—00 £Luj=—00

This is a standard,
We know how to do that!

To differentiate an image array, convolve it (discretely)
with the (sampled, truncated) derivative of a Gaussian
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~ TheDerivaiivesofa2p Gaussian
The Derivatives of a 2D Gaussian

e The Gaussian function is separable:

g(x) =62
Ge(x.y) = 5% = 52 9(¥) = d(X)9(y)

dx)= L =Cxg(x)) =
J Slmllarly, y(x,y =g(x)d(y)
¢ Differentiate (smoothly) in one direction, smooth in the other
® Gy(x,y)and Gy(x, y) are separable as well

m Qm‘x
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~ TheDerivaiivesofa2p Gaussian
The Derivatives of a 2D Gaussian

Gx(x,y) = d(x)g(y) and Gy(x,y) = g(x)d(y)
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. TheDerivatives ofa 2D Gaussian
Normalization

e Can normalize d(c) and g(r) separately

For smoothing, constants should not change:

We want k x g = k (we saw this before)

For differentiation, a unit ramp should not change:
u(r,c) = cisaramp

We want u x d = u (see notes for math)
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e
The Image Gradient

e Image gradient: VI(r,c) = & =g(r,c) = [

e View 1: Two scalar images I(r, ¢), I,(r, c)
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ey
The Image Gradient

¢ View 2: One vector image g(r, ¢)

e We can now measure changes of image brightness
e Edges are of particular interest
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