
Indexing
Introduction to Databases
CompSci 316 Spring 2020

Announcements (Thu., Feb 27)

• Private project threads created on piazza
• Please check you are on your thread
• Primary and secondary project mentors to be assigned soon
• They will give you feedback on MS1, check updates, and help you as

needed
• Feel free to discuss projects in all TA office hours

• Project updates to be posted **every Monday**
• Starts Monday 03/02: each member should say what you are

supposed to do for the rest of the semester and also for MS2
• Make sure that your primary TA says “sounds good” in the response

to each update, otherwise do as they suggest
• Other team members will also check the updates and respond to

the threads as needed if there are confusions or clarifications
• Try to resolve conflicts/concerns within group whenever possible,

otherwise reach out to your TAs and me early

2

Announcements - contd (Thu., Feb 27)

• Homework #4 published due next Wednesday 03/04
• One submission per project group
• See updates on piazza about submitting the link to your website

• Let me know if you want to meet me about midterm or
anything else
• Final exam will be similar in nature (problem-solving based), but the

length/difficulty/question types may vary
• Comprehensive with more focus on topics after midterm
• How to prepare? Think about what we discuss in class and ask me

tough questions!

• Heads up: (almost) weekly quiz or lab **every Thursday**
• For practicing problems for the final
• In groups, but individual submissions
• Quizzes are shorter and discussed in class, Labs are longer with extra

time after class (extra credit for submitting within the class)

3

Today’s lecture

• Index

• Dense vs. Sparse
• Clustered vs. unclustered
• Primary vs. secondary
• Tree-based vs. Hash-index

4

Related

What are indexes for?

• Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

• Find data by other search criteria, e.g.
• Range search

SELECT * FROM R WHERE A > value;
• Keyword search

5

database indexing Search

Focus
of this
lecture

Dense and sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key

6

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

When are these
possible?

Comparison?

Dense versus sparse indexes

• Index size
• ??

• Requirement on records
• ??

• Lookup
• ??

• Update
• ??

7

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Dense versus sparse indexes

• Index size
• Sparse index is smaller

• Requirement on records
• Records must be clustered for sparse index

• Lookup
• Sparse index is smaller and may fit in memory
• Dense index can directly tell if a record exists

• Update
• Easier for sparse index

8

Primary and secondary indexes

• Primary index
• Created for the primary key of a table
• Records are usually clustered by the primary key
• Can be sparse

• Secondary index
• Usually dense

• SQL
• PRIMARY KEY declaration automatically creates a primary

index, UNIQUE key automatically creates a secondary
index
• Additional secondary index can be created on non-key

attribute(s):
CREATE INDEX UserPopIndex ON User(pop);

9

What if the index is too big as well?
10

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

What if the index is too big as well?
11

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Put a another (sparse) index on top of that!

ISAM

• What if an index is still too big?
• Put a another (sparse) index on top of that!
FISAM (Index Sequential Access Method), more or less

12

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: look up 197

Updates with ISAM

• Overflow chains and empty data blocks degrade
performance
• Worst case: most records go into one long chain, so

lookups require scanning all data!

13

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: insert 107

107 Overflow block

Example: delete 129

Start: Tuesday 03/03

14

Announcements (Tue., Mar 03)

• Reminder: HW4 due tomorrow (Wed 03/04)
• One group submission per group on gradescope
• Mention all group members’ names

• Reminder: Lab-2 (index) on Thursday in class

15

Binary Search Tree
16

50

30 70

25 47 59 84

Each node can hold
Exactly one entry

Leaves are sorted

Height balanced:
All leaves are at the
Same level
(complete binary tree)

< 50 >= 50

< 30 >= 30 < 70 >= 70

B-tree: Generalizing Binary Search Trees
17

50

30 ??

25 44 ?? ??

42 ??

27 46 ?? ??35 39 ????

Each node
can hold multiple entries,
has fixed max size
and is sorted

Each node does not have
To be full
#pointers = #entries + 1

Height balanced

Leaves are sorted

< 50 >= 50

< 30 >= 30
< 42

>= 42

B+-tree: Data only at leaves
18

50

30 59

25 44 ?? ??

42 ??

27 46 59 ??35 39 ????

Index Nodes
Containing
Index entries

Data entries: Pointers to actual tuples

< 50 >= 50

< 30 >= 30
< 42

>= 42 Data values can be repeated as index

Leaves are linked

B+-tree: Closer Look

• A hierarchy of nodes with intervals
• Balanced (more or less): good performance guarantee
• Disk-based: one node per block; large fan-out

19
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

to keys
100 ≤ 𝑘

to keys
𝑘 < 100

Sample B+-tree nodes
20

Max fan-out: 4

12
0

15
0

18
0

to keys
100 ≤ 𝑘 < 120

to keys
120 ≤ 𝑘 < 150

to keys
150 ≤ 𝑘 < 180

to keys
180 ≤ 𝑘

Non-leaf
12

0
13

0

to records with these 𝑘 values;
or, store records directly in leaves (pros/cons?)

to next leaf node in sequenceLeaf

to keys
100 ≤ 𝑘

• Question (discuss with your neighbor):

• Why do we use B+-tree as database index instead of
binary trees?

• Why do we use B+-tree as database index instead of
B-trees?
• What are the differences/pros/cons of B-trees vs.

B+-tree as index?

21

vs.

B+-tree versus B-tree

• B-tree: why not store records (or record pointers)
in non-leaf nodes?
• These records can be accessed with fewer I/O’s

• Problems?
• Storing more data in a node decreases fan-out and

increases ℎ
• Records in leaves require more I/O’s to access
• Vast majority of the records live in leaves!

22

B+-tree balancing properties

• Height constraint: all leaves at the same lowest level
• Fan-out constraint: all nodes at least half full

(except root)

Max # Max # Min # Min #
pointers keys active pointers keys

Non-leaf 𝑓 𝑓 − 1 ⌈𝑓/2⌉ ⌈𝑓/2⌉ − 1
Root 𝑓 𝑓 − 1 2 1
Leaf 𝑓 𝑓 − 1 ⌊𝑓/2⌋ ⌊𝑓/2⌋

23

Check yourself

Lookups

• SELECT * FROM R WHERE k = 179;
• SELECT * FROM R WHERE k = 32;

24
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

17
9

Not found

Search key and Data entry

• SELECT * FROM R WHERE k = 179;

25
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

17
9

Search key
(value)

Data Entry
(pointer to tuple)

Range query

• SELECT * FROM R WHERE k > 32 AND k < 179;

26
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

10
0

10
1

11
0

12
0

13
0

15
0

15
6

Look up 32…

And follow next-leaf pointers until you hit upper bound

35

Insertion

• Insert a record with search key value 32

27
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up where the
inserted key
should go…

32

And insert it right there

Another insertion example

• Insert a record with search key value 152

28

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

Oops, node is already full!

What are our options here?

Node splitting
29

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

15
6

Need to add to parent node a pointer
to the newly created node

Oops, that node
becomes full!

More node splitting
30

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

12
0

15
0

15
6

Need to add to parent node a pointer
to the newly created node

• In the worst case, node splitting can “propagate” all the way up
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree

to grow “up” by one level

Deletion

• Delete a record with search key value 130

31

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!

Stealing from a sibling
32

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
6

Remember to fix the key
in the least common ancestor
of the affected nodes

Another deletion example

• Delete a record with search key value 179

33

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

• Deletion can “propagate” all the way up to the root of the
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level

34

10
0

10
1

11
0

12
0

15
0

15
6

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Remember to delete the
appropriate key from parent

Performance analysis

• How many I/O’s are required for each operation?
• ℎ, the height of the tree (more or less)
• Plus one or two to manipulate actual records
• Plus 𝑂 ℎ for reorganization (rare if 𝑓 is large)
• Minus one if we cache the root in memory

• How big is ℎ?
• Roughly log56789: 𝑁, where 𝑁 is the number of records
• B+-tree properties guarantee that fan-out is least 𝑓/2 for

all non-root nodes
• Fan-out is typically large (in hundreds)—many keys and

pointers can fit into one block
• A 4-level B+-tree is enough for “typical” tables

35

B+-tree in practice

• Complex reorganization for deletion often is not
implemented (e.g., Oracle)
• Leave nodes less than half full and periodically

reorganize

• Most commercial DBMS use B+-tree instead of
hashing-based indexes because B+-tree handles
range queries
• A key difference between hash and tree indexes!

36

The Halloween Problem

• Story from the early days of System R…
UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;
• There is a B+-tree index on Payroll(salary)
• The update never stopped (why?)

• Solutions?
• Scan index in reverse, or
• Before update, scan index to create a “to-do” list, or
• During update, maintain a “done” list, or
• Tag every row with transaction/statement id

37

https://en.wikipedia.org/wiki/Halloween_Problem

• If order of data records in a file is the same as, or `close to’,
order of data entries in an index, then clustered, otherwise
unclustered

• How does it affect # of page accesses? (in class)

Index entries

Data entries

direct search for

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

38

Clustered vs. Unclustered Index

• How does it affect # of page accesses?
• (in class – discuss with your neighbors)

• SELECT * FROM USER WHERE age = 50
• Assume 12 users with age = 50
• Assume one data page can hold 4 User tuples
• Suppose searching for a data entry requires 3 IOs in a

B+-tree, which contain pointers to the data records (assume
all matching pointers are in the same node of B+-tree)

• What happens if the index is unclustered?
• What happens if the index is clustered?

39

Clustered vs. Unclustered Index
Data is sorted on search key Data can be anywhere

