Query Processing

Introduction to Databases
CompSci 316 Spring 2020

KE
COMPUTER SCIENCE

Overview

* Many different ways of processing the same query
* Scan? Sort? Hash? Use an index?
« All have different performance characteristics and/or
make different assumptions about data
* Best choice depends on the situation
* Implement all alternatives
* Let the query optimizer choose at run-time

Notation
Recall our disk-memory diagram
* Relations: R, § On board!

* Tuples: 7, s

* Number of tuples: |R|, ||
* Number of disk blocks: B(R), B(S)
* Number of memory blocks available:

* Cost metric
* Number of I/O’s
* Memory requirement

* How do we implement selection and
projection?

* Ideas? (discuss with neighbors)

* Cost?
* (page 1/0 - in terms of B(R), |R| etc.)

* Memory requirement?

Scanning-based algorithms

0001010010101 1011101010001
D1010001101001110110101011
010111010110101001 1010100
010101001110101
01010110101

Table scan

* Scan table R and process the query

* Selection over R
* Projection of R without duplicate elimination

*1/0’s: B(R)

* Trick for selection: stop early if it is a lookup by key
* Memory requirement: 2
* Not counting the cost of writing the result out

* Same for any algorithm!

* Maybe not needed—results may be pipelined into
another operator

3/3/20

* How do we implement Join?

* Ideas? (discuss with neighbors)

* Cost?
* (page /O - in terms of B(R), |R| etc.)

* Memory requirement?

Nested-loop join

R, S
* For each block of R, and for each r in the block:
For each block of S, and for each s in the block:
Output rs if p evaluates to true over r and s
* Ris called the outer table; S is called the inner table
* 1/0’s: B(R) + |R| - B(S)
¢ Memory requirement: 3

Improvement: block-based nested-loop join

More improvements

* Make use of available memory

* Stuff memory with as much of R as possible, stream S
by, and join every S tuple with all R tuples in memory

. 1J0’s: B(R) + [f% “B(S)
¢ Or,roughly: B(R) - B(S)/M
* Memory requirement: M (as much as possible)

* Which table would you pick as the outer?

10

See example on the next slide first 1

External merge sort

Remember (internal-memory) merge sort? < Disk >

¢ Pass 0: read M blocks Memory
of R at a time, sort them,
and write out a level-0 run

Problem: sort R, but R does not fit in memory HH\III\II
{10\ g

* Pass 1: merge (M — 1)
level-0 runs at a time,
and write out a level-1 run

.

* Pass 2: merge (M — 1) level-1 runs at a time, and write
out alevel-Zrun

* Final pass produces one sorted run

ﬁ} Level-0

e

el-1]

7
Block-based Nested Loop Join
‘R, S
* R outer, Sinner
* For each block of R, for each block of S:
For each r in the R block, for each sinthe S
block: ...
* 1/0’s: B(R) + B(R) - B(S)
* Memory requirement: same as before
9
Sorting-based algorithms
http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg
11

12

3/3/20

Toy example

* 3 memory blocks available; each holds one number

*Input:1,7,4,5,2,8,3,6,9
* Pass 0

*,7,4—1,4,7
*528—25,8
* 9’6’34’3’6!9
* Pass1
*1,4,7+258—1,24,5,7,8
* 3’6!9
* Pass 2 (final)
*1,2,4,578+36,9—1,23,4,56,7,89

13

Performance of external merge sort

* Number of passes: [logM_l [B;/[i)” +1

*1/O’s

* Multiply by 2 - B(R): each pass reads the entire relation
once and writes it once

* Subtract B(R) for the final pass
* Roughly, this is O(B(R)xlogyB(R))
* Memory requirement: M (as much as possible)

15

Sort-merge join

R ™Mpa-sp S

* Sort R and S by their join attributes; then merge
1, s = the first tuples in sorted R and S
Repeat until one of R and S is exhausted:

Ifr.A > s.B then s = next tuplein §

elseifr.A < s.B thenr = next tuplein R

else output all matching tuples, and
r,s=nextinRand S

* 1/O’s: sorting + 2B(R) + 2B(S) (always?)
* Inmost cases (e.g., join of key and foreign key)
* Worst case is B(R) - B(S): everything joins

Analysis

* Pass 0: read M blocks of R at a time, sort them, and
write out a level-0 run

* There are [B;/Ii)] level-0 sorted runs

* Pass i: merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run
* (M — 1) memory blocks for input, 1 to buffer output

. # of level—(i—1) runs
« #of level-i runs = [%‘

* Final pass produces one sorted run

14

Some tricks for sorting

* Double buffering
* Allocate an additional block for each run
* Overlap I/O with processing
* Trade-off: smaller fan-in (more passes)

* Blocked I/O

* Instead of reading/writing one disk block at time,
read/write a bunch (“cluster””)

* More sequential I/0’s
* Trade-off: larger cluster — smaller fan-in (more passes)

16

Example of merge join

R: S: R Xpg-sp S:
Tl.A =1 Sl.B =1 St
Tz.ﬁ = g Sz.g = % 1S3

r3.A = s3.B =

mA=5 sB=3 125
reA=7 ss.B =8 T3S3
Te.A=7 7354
r7.A=8 TS5

17

18

3/3/20

Optimization of SMJ

* Idea: combine join with the (last) merge phase of merge sort

* Sort: produce sorted runs for R and S such that there are
fewer than M of them total

* Merge and join: merge the runs of R, merge the runs of S, and
merge-join the result streams as they are generated!

Performance of SMJ

* If SMJ completes in two passes:
* 1/0’s:3 - (B(R) + B(S)) - why 3?
¢ Memory requirement

* We must have enough memory to accommodate one block
from each run: M > "2 PLL
M M
« M>./BR) ¥+ B®)

* If SMJ cannot complete in two passes:

* Repeatedly merge to reduce the number of runs as
necessary before final merge and join

Bisk Memory
, [| =’V‘erge
£y |
2| | B \goin |
£ 5 { | m_/
E—
v = Merge
19

Other sort-based algorithms

* Union (set), difference, intersection
* More or less like SMJ
* Duplication elimination
* External merge sort
* Eliminate duplicates in sort and merge
* Grouping and aggregation
* External merge sort, by group-by columns
« Trick: produce “partial” aggregate values in each run, and
combine them during merge

* This trick doesn’t always work though
+ Examples: SUM(DISTINCT ...), MEDIAN(...)

21

Hash join

R™Mpa=sp S
* Main idea
* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S
* If . Aand 5. B get hashed to different partitions, they

don’t join
R

BT [— Nested-loop join

P considers all slots
S

3 Hash join considers only
4 those along the diagonal!
5

23

20

Hashing-based algorithms

rakuten. itygas/i 41233/

22

Partitioning phase

* Partition R and S according to the same hash
function on their join attributes

Memory

M — 1 partitions of R

Same for §

24

3/3/20

Probing phase

* Read in each partition of R, streamin the
corresponding partition of S, join
* Typically build a hash table for the partition of R

* Not the same hash function used for partition, of course!

ST — Memory
load
e EIEEE- @

R
partitions \ m-

For each S tuple,
[l probe and join

¥

stream

S
partitions

Performance of (two-pass) hash joir;

* If hash join completes in two passes:
* 1/0’s:3 - (B(R) + B(S))
* Memory requirement:
* In the probing phase, we should have enough memory to fit
one partition of R: M — 1 > Z(_Ll)
«M>BR) +1
* We can always pick R to be the smaller relation, so:

M > Jmin(B(R),B(S)) +1

25

26

Generalizing for larger inputs

* What if a partition is too large for memory?
* Read it back in and partition it again!

* See the duality in multi-pass merge sort here?

Hash join versus SMJ

(Assuming two-pass)
* 1/O’s: same
* Memory requirement: hash join is lower

. \/min(B(R),B(S)) +1</B®FBB)

* Hash join wins when two relations have very different sizes
* Other factors

* Hash join performance depends on the quality of the hash

* Might not get evenly sized buckets

* SMJ can be adapted for inequality join predicates

* SMJ wins if R and/or S are already sorted

* SMJ wins if the result needs to be in sorted order

27

What about nested-loop join?

* May be best if many tuples join
* Example: non-equality joins that are not very selective

* Necessary for black-box predicates
* Example: WHERE user_defined_pred(R. A, S.B)

29

28

Other hash-based algorithms

* Union (set), difference, intersection

* More or less like hash join
* Duplicate elimination

* Check for duplicates within each partition/bucket
* Grouping and aggregation

* Apply the hash functions to the group-by columns

* Tuples in the same group must end up in the same
partition/bucket

* Keep a running aggregate value for each group
¢ May not always work

30

Duality of sort and hash

* Divide-and-conquer paradigm
* Sorting: physical division, logical combination
* Hashing: logical division, physical combination
* Handling very large inputs
* Sorting: multi-level merge
* Hashing: recursive partitioning
* 1/O patterns
* Sorting: sequential write, random read (merge)
* Hashing: random write, sequential read (partition)

Index-based algorithms

http://il.trekearth.com/photos/28820/p2270994 jpg

31

32

Selection using index

* Equality predicate: 04—, (R)
* Use an ISAM, B*tree, or hash index on R(A)

* Range predicate: g4~ (R)
* Use an ordered index (e.g., ISAM or B+tree) on R(A4)
* Hash index is not applicable

* Indexes other than those on R(A4) may be useful
* Example: B+tree index on R(4, B)
* How about B+-tree index on R(B, A)?

Index versus table scan

Situations where index clearly wins:
* Index-only queries which do not require retrieving
actual tuples
* Example: 74 (JA>,, (R))
* Primary index clustered according to search key
* One lookup leads to all result tuples in their entirety

33

Index versus table scan (cont’d)

BUT(!):
* Consider g4~,,(R) and a secondary, non-clustered
index on R(4)
* Need to follow pointers to get the actual result tuples
* Say that 20% of R satisfies A > v
* Could happen even for equality predicates
* 1/0’s for index-based selection: lookup +20% |R|
* 1/O’s for scan-based selection: B(R)
* Table scan wins if a block contains more than 5 tuples!

35

34

Index nested-loop join

R Mpa=sp S
* Idea: use a value of R. A to probe the index on S(B)
* For each block of R, and for each r in the block:

Output rs

* 1/0’s: B(R) + |R| - (index lookup)
* Typically, the cost of an index lookup is 2-4 1/0’s
* Beats other join methods if |R| is not too big
* Better pick R to be the smaller relation

* Memory requirement: 3

Use the index on S(B) to retrieve s withs.B =1.4

36

3/3/20

Zig-zag join using ordered indexes

R ™pa=sp S
* Idea: use the ordering provided by the indexes on R(4)
and S(B) to eliminate the sorting step of sort-merge join
* Use the larger key to probe the other index
* Possibly skipping many keys that don’t match

g > 3 4 w7 wmqg =18

) wmy mmg wqq 12 17 =19

Summary of techniques

* Scan
* Selection, duplicate-preserving projection, nested-loop join
* Sort
* External merge sort, sort-merge join, union (set), difference,
intersection, duplicate elimination, grouping and
aggregation
* Hash

* Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation

* Index
* Selection, index nested-loop join, zig-zag join

37

38

3/3/20

