XML

Introduction to Databases
CompSci 316 Spring 2020

DUKE

COMPUTER SCIENCE

Updates

* HW5 problems on gradescope and gradiance

* (One) more coming on XML
* There may be an extra credit problem

* Let us know if you have problems in collaboration
for project/HW or accessing material

* Video-watch assignments to be submitted by ALL (2
days after lecture + 2 bonus days)

| ecture 11a:

XML Basics

Structured vs. unstructured data

* Relational databases are highly structured
* All data resides in tables
* You must define schema before entering any data
* Every row confirms to the table schema
* Changing the schema is hard and may break many things

* Texts are highly unstructured

e Datais free-form

* There is no pre-defined schema, and it’s hard to
define any schema

* Readers need to infer structures and meanings

What’s in between these two extremes?

Sudeepa Roy

round

e lamcoc
Deadline

e Potent

e Potential

youcans

* Thanks tc
(Duke St:

* Thanks tc

* Thanks tc
s

Backgrou

I joined the Dep
I am a member
which is part of

Before joining |
University of W

I eraduated fron

Assistant Professor
Department of Computer Science

e

- _‘ NEW & INTERESTING FINDS ON AMAZON

Campus Box 90129
Durham, NC 27708-0129

5 4

|

-]

1S

C' | @& Secure | https://www.amazon.com/s/ref=nb_sb_ss_c_1_8?url=search-alias%3Dinstant-video&field-keywords=simpsons&sprefix=simpsons%2Caps%2C133&crid=NTZCTUN5GGSJ

B &

Amazon Video - | simpsons

Departments -
Amazon Video Originals TV Shows Movies

1-16 of 570 results for Amazon Video : "simpsons"

All Videos (569)

Show results for

S
< Any Department Eﬂ WE

Amazon Video "
v (‘
i)

Movies

Refine by

Channels
Broadway HD
Cinemax
Comic-Con HQ
Echoboom Sports
Fandor

HBO

IndieFlix Shorts
REELZ NOW
Seeso

TARZ

Stingray Karaoke
TheSurfNetwork
See more

Amazon Prime

O vprime

New Releases

Last 30 Days
Last 90 Days

Purchase Type
Purchase
Rental

Genre

Action & Adventure
Comedy
Documentary
Drama

Horror

Kids & Family
Music Videos &
Concerts

Mystery & Thrillers
Romance

Science Fiction
Special Interests
Sports

See more

Mood

Bleak
Exciting
Feel Good
Funny
Offbeat
Rough
Suspenseful
Touching
See more

Theme

Included with Prime (97) Channels (136)

‘Your Amazon.com Today's Deals Gift Cards & Registry Sell Help

Kids Explore

Rent or Buy (308) Free with Ads (15)

The Simpsons Movie 2007 PG-13

After Homer accidentally pollutes the town's water supply,
Springfield is encased in a gigantic dome by the EPA and the Simpson
family are declared fugitives.

Cast

Dan Julie Nancy Yeardley Hank Harry Pame
Castel... Kavner Cartw.. Smith Multiple Shearer Haydi
Multiole Multiole Multiole LisaSi... charac... Multiole Multi

The Simpsons Season 29 2017 CC
$000-$3499 Buy episodes or Buy TV Season Pass

The Simpsons Season 5 1993 | CC
$299-$1999 Buy episodes or Buy season

The Simpsons Season 7 1995 ' CC
$299-$1999 Buy episodes or Buy season

The Simpsons Season 4 1992 CC
$299-$1999 Buy episodes or Buy season

The Simpsons Season 6 1994 CC
$299-$1999 Buy episodes or Buy season

The Simpsons Season 15 2003 CC
$299-$1999 Buy episodes or Buy season

IMDb. 7.4/10

Release: Jul 21, 2007

Directed David Silverman
by:

Genre:
Runtime:87 minutes

Ffreder g

KRAAK - 3

Feteteeds - 384

Adventure, Animation, Comedy

SI ngoﬂs

The Simpsons Season 1 1989 | CC
$299-$1499 Buy episodes or Buy season

The Simpsons Movie 2007 PG-13 CC
U.O%Watch with HBO on Amazon Channels.

The Simpsons Season 28 2016 CC
$000 - $2499 Buy episodes or Buy TV Season Pass

The Simpsons Season 26 2014 CC
$000-$1999 Buy episodes or Buy season

The Simpsons Season 17 2006 CC
$299-$1999 Buy episodes or Buy season

The Simpsons Season 2 1990 CC
$299-$1999 Buy episodes or Buy season

The Simpsons Season 3 1991 CC
$199-$1999 Buy episodes or Buy season

EN

Your Watchlist

Fedekts - ggo

Fededekets 553

Starring: Dan Castellaneta, Julie Kavner, et al.
Directed 20TH_CENTURY_FOX

by:
Runtime:1 hr 26 mins

AR - 67

RAAAS - 153

Everyday FREE Shipping: Eligible orders ove
Hello. Sign in

Accountd Lists - Orders TryPrime- \/Cart
Your Video Library ~ Settings Getting Started Help

Sort by | Relevance v

Semi-structured data

* Observation: most data have some structure, e.g.:

* Book: chapters, sections, titles, paragraphs, references,
index, etc.

* Item for sale: name, picture, price (range), ratings,
promotions, etc.

XML: eXtensible Markup Language

<bibliography>

<book>
<title>Foundations of Databases</title> Bibli hv
<author>Abiteboul</author> 1paograpny
<author>Hull</author>
<author>Vianu< /a uthor> Foundations of Databases, Abiteboul, Hull, and Vianu
<publisher>Addison Wesley</publisher> Addison Wesley, 1995
<year>1995</ year> Data on the Web, Abiteboul, Buneman, and Suciu
</book> Morgan Kaufmann, 1999

<book>...</book>
</bibliography>

 Text-based

* Capture data (content), not presentation
e Similar but different from HTML

 Data self-describes its structure
* Names and nesting of tags have meanings!

Other nice features of XML

: Just like HTML, you can ship XML data
across platforms
* Relational data requires heavy-weight API’s

: You can represent any information
(structured, semi-structured, documents, ...)
* Relational data is best suited for structured data

: Since data describes itself, you can
change the schema easily
* Relational schema is rigid and difficult to change

<bibliography>
<book ISBN="ISBN-10" price="80.00">

ht <title>Foundations of Databases</title>
XM L te rl I I I n O O y <author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>

<year>1995</year>

names: book, title, ... Lot
: <book>, <title>, ...
: </book>, </title>, ...

* An is enclosed by a pair of start and end
tags: <book>...</book>
* Elements can be nested: <book>...<title>...</title>...</book>

* Empty elements: <is_textbook></is_textbook>
* Can be abbreviated: <is textbook/>

 Elements can also have
<book ISBN="..." price="80.00">

* Many other features

®Ordering generally matters, except for attributes

Well-formed XML documents

A XML document

* Follows XML lexical conventions

* Wrong: <section>We show that x < 0...</section>

* Right: <section>We show that x &It; 0...</section>
* Other special entities: > becomes and & becomes

* Contains a single root element

* Has properly matched tags and properly nested
elements (like parentheses matching)
. Right: <section>...<subsection>...</subsection>...</section>

* Wrong: <section>...<subsection>...</section>...</subsection>
e Think of {{()}([])} matching!

A tree representation “mr.,cun

<title>Foundations of Databases</title>
T <author>Abiteboul</author>
b|b||ography <author>Hull</author>

<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>...
</bibliography>

Foundations Abiteboul Hull Vianu Addison 1995
of Databases Wesley

Introduction In this

section we

introduce the

notion of)

otion o semi-
structured

data

Optional slide

DTD and Schema (details omitted)

DTD (Document Type
Definitions)

Specifies Schema and
constraints for XML

Specifies a grammar (e.g.

+, ? for one or more, zero
or1etc.)

Another option XML
schema (.xsd)

<?xml version="1.0"?>
<IDOCTYPE bibliography [

<IELEMENT bibI|o raphy (book+)>

<IELEMENT book (title, author* publlsher? year?, section™)>
<IATTLIST book ISBN ID #REQUIRED>

<IATTLIST book price CDATA #IMPLIED>

<IELEMENT title (#PCDATA)>

<IELEMENT author (#PCDATA)>

<IELEMENT publisher (#PCDATA)>

<IELEMENT ear (#PCDATA)>

<IELEMENT i (#PCDATA)>

<IELEMENT content (#PCDATA|i)*>

]<|ELEMENT section (title, content?, section®)>
>

<bibliography>

<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>...</section>...

</book>

<7bib|iography>

13

XML versus relational data

Relational data XML data
 Schemais always fixedin ~ * Well-formed XML does not
advance and difficult to require predefined, fixed
change schema
* Simple, flat table structures « Nested structure; ID/IDREF(S)
permit arbitrary graphs

* Ordering forced by
document format; may or
may not be important

* Exchange is problematic ~ * Designed for easy exchange

* “Native” support in all * Often implemented as an
serious commercial DBMS ‘“add-on” on top of relations

* Ordering of rows and
columns is unimportant

Case study

* Design an XML document representing cities,
counties, and states
* For states, record name and capital (city)
* For counties, record name, area, and location (state)

* For cities, record name, population, and location (county
and state)

* Assume the following:
* Names of states are unique
* Names of counties are only unique within a state
* Names of cities are only unique within a county
* Acity is always located in a single county
* A county is always located in a single state

A possible design

Design an XML document representing cities, counties, and states

For states, record name and capital (city)

For counties, record name, area, and location (state)

For cities, record name, population, and location (county and state)
Assume the following:

Names of states are unique

Names of counties are only unique within a state

Names of cities are only unique within a county

A city is always located in a single county

A county is always located in a single state

name
capital_city id

id
name
population

Lecture 11b:

XPath and XQuery

Query languages for XML

e XPath

* Path expressions with conditions

< Building block of other standards (XQuery, XSLT, XLink,
XPointer, etc.)

* XQuery
* XPath + full-fledged SQL-like query language

* Also XSLT (not covered)

* We would cover only simple queries

Try the queries in this lecture online

<bibliography>

° There are many Online <book ISBN="ISBN-10" price:"70">
Xpath/Xquery testers <title>Foundations of Databases</title>
e.g. <author>Abiteboul</author>

<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>

* http://codebeautify.org/X
path-Tester (XPATH)

* http://videlibri.sourceforg <year>1995</year>
e.net/cgi-bin/xidelcgi <section>abc</section>
(XQUERY) </book>

<book ISBN="ISBN-11"price="20">
<title>DBSTS«</title>
<author>Ramakrishnan</author>

* Try with this example (or
change it for different

querles) <author>Gehrke</author>
e Caveats <publisher>Addison Wesley</publisher>
* if you see bad characters, <year>1999</year>
you might have to replace <section>abc</section>
them like " or. </book>
* Not everything works all </bibliography>

the time! Try different
websites and config

http://codebeautify.org/Xpath-Tester
http://videlibri.sourceforge.net/cgi-bin/xidelcgi

XPath

» XPath specifies path expressions
that match XML data by navigating
down (and occasionally up and
across) the tree

* Example
* Query:

 Like a file system path, except there can
be multiple “subdirectories” with the
same name
* Result: all author elements reachable
from root via the path

/bibliography/book/author

<bibliography>

<book ISBN="ISBN-10" price="70">

<title>Foundations of Databases</title>

<author>Abiteboul</author>

<author>Hull</author>

<author>Vianu</author>

<publisher>Addison Wesley</publisher>

<year>1995</year>

<section>abc</section>

</book>

<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

Basic XPath constructs

separator between steps in a path
matches any child element with this tag name
matches any child element

matches the attribute with this name
matches any attribute

matches any descendent element or the
current element itself

matches the current element
matches the parent element

Simple XPath examples

e All book titles

e All book ISBN numbers

<bibliography>

<book ISBN="ISBN-10" price="70">

<title>Foundations of Databases</title>

<author>Abiteboul</author>

<author>Hull</author>

<author>Vianu</author>

<publisher>Addison Wesley</publisher>

<year>1995</year>

<section>abc</section>

</book>

<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

* All title elements, anywhere in the document

* All section titles, anywhere in the document

* Authors of bibliographical entries (suppose there
are articles, reports, etc. in addition to books)

<bibliography>
° ° <book ISBN="ISBN-10" price="70">

P re d I C a t e S I n <title>Foundations of Databases</title>

<author>Abiteboul</author>
° <author>Hull</author>

p a t h e X p re S S l O n S <author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>abc</section>
</book>
<book ISBN="ISBN-11"price="20">

matChE.ES the . z;izl’cijo?’fli-ari:algrt'il:;nan</author>
“current” element if condition e publishers
evaluates to true on the current weorogachears
e l eme nt <section>abc</section>
.] </book>
* Books with price lower than s$50 </bibliography>

/bibliography/book

« XPath will automatically convert the
price string to a numeric value for
comparison

Predicates in

path expressions — contd.

 Books with author “Abiteboul”

/bibliography/book

* Books with a publisher child element

/bibliography/book

* Prices of books authored by
“Abiteboul”
/bibliography/book

/@price

<bibliography>

<book ISBN="ISBN-10" price="70">

<title>Foundations of Databases</title>

<author>Abiteboul</author>

<author>Hull</author>

<author>Vianu</author>

<publisher>Addison Wesley</publisher>

<year>1995</year>

<section>abc</section>

</book>

<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

More complex predicates

Predicates can use , Or, and

* Books with price between s$40
and $50
/bibliography/book

* Books authored by “Abiteboul”
or those with price no lower than

350
/bibliography/book

/bibliography/book

* Any difference between these two queries?

<bibliography>

<book ISBN="ISBN-10" price="70">

<title>Foundations of Databases</title>

<author>Abiteboul</author>

<author>Hull</author>

<author>Vianu</author>

<publisher>Addison Wesley</publisher>

<year>1995</year>

<section>abc</section>

</book>

<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

A tricky example

* Suppose for a moment that price is a child
element of book, and there may be multiple
prices per book

* Books with some price in range [20, 50]

* Wrong answer:
/bibliography/book
(returns true with one price 10 and one 70!)

* Correct answer:
/bibliography/book

Predicates involving node-sets

* There may be multiple authors, so author in general
returns a (in XPath terminology)

* The predicate evaluates to true as long as it
evaluates in the node-set,
i.e., at least one author is “Abiteboul”

* Another tricky query
/bibliography/book
* Will it return any books?

* (Returns books with at least one “Abiteboul” and one
non-Abiteboul as authors!)

Read yourself if needed for HW problems

More XPath operators and functions

Frequently used in conditions:
))))
true if string x contains string y
counts the number nodes in node-set

returns the “context position” (roughly, the position of the
current node in the node-set containing it)

returns the “context size” (roughly, the size of the node-set
containing the current node)

returns the tag name of the current element
Books with fewer than 10 sections
All elements whose tag names contain “section” (e.g., “subsection”)

Title of the first section in each book

A shorthand:
Title of the last section in each book

XQuery

* XPath + full-fledged SQL-like query language

Sample online Xquery tester:

¢ XQ ue ry ex p ress i ons can b e http://videlibri.sourceforge.net/cgi-bin/xidelcgi
o XPath expressions Use Xquery 3.0, node format = xml, output format = adhoc,

. and compatibility = Standard Xquery in the settings
* FLWOR expressions
* Quantified expressions
* Aggregation, sorting, and more...

* An XQuery expression can return a new result XML
document

http://videlibri.sourceforge.net/cgi-bin/xidelcgi

A simple XQuery based on XPath

Find all books with price lower than s50

<result>{

deef-bibxnl/bibliography/book[@price<50]

}</result>
* Things outside {}’s are copied to output verbatim

* Things inside {}’s are evaluated and replaced by the
results
* doc("bib.xml") specifies the document to query
 Omit this in the online tester

o T
e
o T

ne XPath expression returns a sequence of book
ements

hese elements (including all their descendants) are

copied to output

29

30

FLWR expressions

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for Sb in /bibliography/book
let Sp := Sb/publisher
where Sb/year < 2000

return : loop
<book> * Sbranges over the result sequence, getting
{Sb/title } one item at a time
{Sp} : ““assignment”’
</book> * Sp gets the entire result of Sb/publisher
}</result> (possibly many nodes)

: filtering by condition
: result structuring
* Invoked in the “innermost loop,” i.e., once
for each successful binding of all query
variables that satisfies where

An equivalent formulation

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for Sb in /bibliography/book[year<2000]
return
<book>
{ Sb/title }
{ Sb/publisher }
</book>
}</result>

31

32

Another formulation

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for Sb in /bibliography/book,

} Nested loop
where Sb/year < 2000

return
<book> * Is this query equivalent to the previous two?
{ Sb/title } * Yes, if there is one publisher per book
{Sp} * No, in general
</book>

* Two result book elements will be
}</result> created for a book with two publishers
* Noresult book element will be created
for a book with no publishers

Yet another formulation

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{

where Sb/year < 2000

return
<book>
{ Sb/title } * Is this query correct?
{ Sb/publisher } * No!
</book> * It will produce only one output book
}</result> element, with all titles clumped together

and all publishers clumped together
 All books will be processed (as long as one is
published before 2000)

33

34

An explicit join

* Find pairs of books that have common author(s)

<result>{

for Sb1 in deef*bibxmi}//book
for Sb2 in deef*bibxmi™}//book
where Sb1/author = Sb2/author

and Sb1/title > Sb2/title
return

<pair>

{Sb1/title}

{Sb2/title}

</pair>
}</result>

< These are string comparisons,
not identity comparisons!

More features

* Learn if useful in homework, not needed for exams

* Subqueries

35

OPTIONAL SLIDE

* normalize-space(string) removes leading and trailing spaces from
string, and replaces all internal sequences of white spaces with one

white space

* Existential (some) and Universal (all)

e Conditional

* Use anywhere you’d expect a value, e.g.:
* |let Sfoo :=if (...) then ... else ...

e return <bar blah="{if (...

then ... else ... }"/>

Extract book titles and their authors; make

title an attribute and rename author to writer

<bibliography>{
for Sb in doc("bib.xml")/bibliography/book
return

<book title="{normalize-space(Sb/title)}">{

for Sa in Sb/author
return <writer>{string(Sa)}</writer>
}</book>
}</bibliography>

Find titles of books in which XML is
mentioned in some section

<result>{
for Sb in doc("bib.xml")//book
where (some Ssection in Sb//section
satisfies
contains(string(S$section),
"XML"))
return Sb/title
}</result>

Find titles of books in which XML is
mentioned in every section
<result>{
for Sb in doc("bib.xml")//book
where (every Ssection in Sb//section
satisfies
contains(string(Ssection),
"XML"))
return Sb/title
}</result>

6
OPTIONAL SLIDE ’

Aggregation

* Learn if useful in homework, not needed for exams

* List each publisher and the average prices of all its
DO0KS

<result>{
for Spub in distinct-values(doc("bib.xml")//publisher)
let Sprice := avg(doc("bib.xml")//book[publisher=Spub]/@price)
return
<publisherpricing>
<publisher>{Spub}</publisher>
<avgprice>{Sprice}</avgprice>
</publisherpricing>
}</result>

* distinct-values(collection) removes duplicates by value

* If the collection consists of elements (with no explicitly declared types), they
are first converted to strings representing their “normalized contents”

* avg(collection) computes the average of collection (assuming each item in
collection can be converted to a numeric value)

Lecture 11¢:

XML to Relational Data

Which one is easier?

e XML to relational?
* Or

e Relational to XML?

Mapping XML to relational

e Store XML in a column

* CLOB (Character Large OBject) type
* Not much useful!

e Alternatives?

well-formed XML — generic relational schema
mapping for graphs
mapping for trees
mapping for trees (not covered)

valid XML — special relational schema based on DTD

Example — Node/Edge Based

<bibliography>
<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>

blbllography <author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
</book>...
lSBN book book, </bibliography>
Price
title author author author publisher year

* How would you translate it to a relational schema?
* Element? Attribute? Parent-child relationship?
« Keys? (Do not see the next slides yet!)

Node/edge-based: schema

Key: (eid, attrName)
* Attribute order does not matter

Keys: (eid, pos), (child)
* pos specifies the ordering of children
* child references either Element(eid) or Text(tid)

* tid cannot be the same as any eid
“ Need to “invent” lots of id’s

Need indexes for efficiency, e.g., Element(tag),
Text(value)

Node/edge-based: example

<bibliography> ElementCh”d
<bqok ISBN="ISBN—10" price="80.00'f> Element mmm

<title>Foundations of Databases</title>

<author>Abiteboul</author> m_ 1
<author>Hull</author>
el 1 e2
<author>Vianu</author> bibliography
<publisher>Addison Wesley</publisher> el book el 2 e3
<year>1995</year> .
</book>... e2 title el 3 e
</bibliography> e3 author el 4 e5
ed author el 5 e6
e5 author = 6 e’
ISBN ISBN-10
e7 year e3 1 t1
1 .
e price 80 el T -
e5 1 i3
Text m_ — T
Foundations of Databases
e7 1 t5
t1 Abiteboul
12 Hull
t3 Vianu
t4 Addison Wesley

t5 1995

Node/edge-based: queries

el

ISBN-10

o /[/title

ISBN

el price

SELECT eid FROM Element WHERE tag = 'title’;

o //section/title

SELECT e2.eid

FROM Element el, ElementChild c, Element e2
WHERE el.tag = 'section’

AND e2.tag = 'title'

AND el.eid = c.eid

AND c.child = e2.eid;

® Path expression becomes joins!

* Number of joins is proportional to the length of the path expression
» //bibliography/book[author="Abiteboul"]/@price

More complex SQL queries with EXISTS needed

e //book//title

Needs recursion (not covered yet)

80

43

CECEETE
e0 1 el
Attribute = °
el 2 e3
el 3 e4
el 4 e5
@il 5 eb
e0 bibliography e ! ©
e3 1 tl
el book et 1 ©
e2 title e5 1 t3
e3 author e6 1 t4
ed author &7 1 &
e5 author lementChild
e6 publisher
= Element

year

Text

t0
t1
t2
t3
t4
t5

Foundations of Databases
Abiteboul

Hull

Vianu

Addison Wesley

1995

Example - Interval Based

<bibliography>
<book ISBN="ISBN-10" price="80.00">

. <title>Foundations of Databases</title>
blbllography <author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
</book>...
lSBN book book, </bibliography>
Price
title author author author publisher year

* How would you translate it to a relational schema?
* Using intervals!

44

45

Interval-based: example

<bibliography>
<book ISBN="ISBN-10" price="80.00"> bibliography 1,999,1

<title>4Foundations of Databases</title>
<author>7Abiteboul</author>
<author>10Hull</author> book 2912
<author>13Vianu</author> e
<publisher>16Addison Wesley</publisher>
<year>191995</year>

</book>21...

</bibliography>

o o) o o
title author author author publisher year
3,5,3 6,8,3 9,11,3 12,14,3 15,17,3 18,20,3

First two fields denote the interval.. see next slide

Interval-based: schema

* left is the start position of the element
right is the end position of the element

level is the nesting depth of the element (strictly
speaking, unnecessary)

Key is left

Key is left

Key is (left, attrName)

Interval-based: example

<bibliography>

<book ISBN="ISBN-10" price="80.00"> bibliography 1,999,1
<title>4Foundations of Databases</title>
<author>7Abiteboul</author> //\
<author>10Hull</author> book 2,212

<author>13Vianu</author>
<publisher>16Addison Wesley</publisher>
<year>191995</year>

</book>21...

</bibliography>

o o) o) o
title author author author publisher year
3,5,3 6,8,3 9,11,3 12,14,3 15,17,3 18,20,3

®Where did ElementChild go?
* e, is the parent of e, iff:

|e,.left, eq.right] D [e,.left, e,.right], and
eq.level = e,.level — 1

Interval-based: queries

» //section/title

e SELECT e2.left
FROM Element el, Element e2
WHERE el.tag = 'section' AND e2.tag = 'title'
AND el.left < e2.left AND e2.right < el.right

AND el.level = e2.level-1;
® Path expression becomes “containment” joins!
* Number of joins is proportional to path expression length

* //book//title

e SELECT e2.left
FROM Element el, Element e2
WHERE el.tag = 'book' AND e2.tag = 'title’

AND el.left < e2.left AND e2.right < el.right;
“No recursion!

48

