Lecture 10 Graph Algorithms 1 Depth First Search

Wednesday, February 19, 2020 1:56

- graph

Craph G = (V, E), V is the set of vertices E is a subset of edges $(E \subseteq V \times V)$

- directed graph: E contains ordered pairs

- undirected graph: E contains unordered pairs

- notation: n = |V| number of vertices

m=|E| number of edges

- degree of vertex UEV, is the number of edges

that u is adjacent to deg(u)

$$G = (V, E)$$

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1,2), (2,3), (1,4), (2,4), (3,4)\}$

$$V = \{1, 2, 3\}$$

$$E = \{(1,2),(2,3),(3,1)\}$$

- in many cases

O there are no "parallel edges"

$$M \leq V_{z}$$

@ if graph is connected

$$M > M - 1$$

in particular $\Theta(log m) = \Theta(log n)$

2 enter C enter
(s) enler
(5) leave
(2) (eaue
(4) enter
(4) (eave
(3) (eave
(i) leave
() (earle