COMPSCI 330: Design and Analysis of Algorithms Feb 24, 2020

Lecture 11: Graph Algorithms II
Lecturer: Rong Ge Scribe: Haoming Li

Overview

In this lecture, we compare breath-first search (BFS) and depth-first search (DFS), two ways to traverse a
graph, and study their applications.

11.1 Applications of Depth-First Search

In the previous lecture, we detailed the DFS algorithm and introduced the notion of pre-order and post-
order. To present our first application of DFS, we first observe that the edges we traverse as we execute a
DFS can be classified into four types. During a DFS execution, the classification of edge (u,v), depends on
whether we have visited v before in the DFS and if so, the relationship between u and v.

1. If v is visited for the first time as we traverse the edge (u,v), then the edge is a tree edge.
2. Else, v has already been visited:

(a) If v is an ancestor of u, then edge (u,v) is a backward edge.
(b) Else, if v is a descendant of u, then edge (u,v) is a forward edge.

(¢) Else, if v is neither an ancestor or descendant of u, then edge (u,v) is a cross edge.

Consider the following example: given directed graph on the left.

The tree formed by the solid edges on the right is a DFS tree, constructed by a DFS algorithm starting from
vertex s. If we break ties by alphabetical order, then the pre-order of this DFS traversal would be s, a, b, ¢, d
and the post-order would be b, ¢, a,d,s. The solid edges are tree edges. (s,c) is a forward edge, (b,s) is a
backward edge and (d, ¢) is a cross edge.

Similar to the struture of the DFS tree and the pre-/post-order, edge types also depend on the choices made
in the DFS algorithm. We are now ready to introduce the first application of DFS: cycle finding.

11-1

11-2 Lecture 11: Graph Algorithms II

11.1.1 Cycle Finding

In short, graph G has a cycle if and only if DFS finds at least one backward edge. The algorithm is precisely
defined below.

Algorithm: DFS_visit(u)
Mark u as visited;
Mark u as in stack;
for each edge (u,v) do
if v is in stack then
| (u,v) is a backward edge, found a cycle
end
if v is not visited then
| DFS_visit(v)
end

end
Algorithm: DFS

for u =1 ton do
if u is not visited then
| DFS_visit(u)
end
end

Theorem 11.1 A directed graph G contains cycles iff DFS_visit on G finds backward edges.

Proof: For one direction, observe that if there exists a backward edge in the DFS tree, then there is a cycle
in the graph. For the other direction, suppose that there exists a cycle {uy,us,...,u;,u1} in the graph and
wlog let u; be the first vertex visited by DFS on this cycle. Then all other vertices in the cycle us, ... u;
are descendants of u; in the DFS tree. Since edge (uy,uq1) is in the graph, it must be a backward edge by
definition. [|

11.1.2 Topological Sort

Given a directed acyclic graph, we want to output an ordering of vertices such that all edges are from an
earlier vertex to a later vertex. For example, consider the graph below.

OO

O

E ©

Lecture 11: Graph Algorithms I1 11-3

One possible topological ordering would be f, g, b, a, ¢, d, e, h. This is, in fact, the reverse of the post-order
output by a DFS. In fact, every reverse post-order is a valid topological sort. We will prove this by proving
the following lemma.

Lemma 11.2 For every edge (u,v), u must be later than v in post-order.
Proof: Assume towards contradiction that there is an edge (u,v) where u is before v in post order.

e If w is visited before v. By the base case of the previous lemma, u is on the stack when v is visited.
Therefore, u is after v in post order.

o If u is visited after v, then 1) visit v, then 2) visit u, then 3) DFS_visit(u) returns, then 4) DFS_visit(v)
returns is the only possible sequence of events. This means when w is visited, v is on the stack. By
DFS algorithm, there is a path from v to u, but (u,v) is also an edge. So the v-u path and edge (u,v)
form a cycle. This contradicts with the assumption that the graph is acyclic.

11.2 Breath-First Search

Another way to traverse a graph is via Breath-First Search (BFS). In BFS, at any vertex, we visit its
neighbors first (before its neighbors’ neighbors.)

Algorithm: BFS_visit(u)
Mark u as visited;
Put v into a queue;
while queue is not empty do
Let x be the head of the queue;
for all edges (z,y) do
if y has not been visited then
Add y to the queue;
Mark y as visited;
end
end
Remove x from the queue;
end
Algorithm: BFS

for u =1 ton do
| BFS_visit(u);
end

11.3 Applications of Breath-First Search

To introduce an application of BFS, we first introduce the idea of a BFS tree. If y is added to the queue
while examining x, then (z,y) is an edge in the BFS tree.

11.3.1 Shortest Path

Given a graph as well as pair of edges, we want to find the path between them that minimizes the number
of edges. BFS helps us to find exact that.

11-4 Lecture 11: Graph Algorithms II

Lemma 11.3 From starting point u, BFS finds the shortest path from u to every v reachable from u.

Proof: We will again prove this by induction.
Induction Hypothesis: BFS finds shortest path from u to every v at a distance <.

Base case: When [= 1, (u,v) is an edge. Since BFS first considers all neighbors of w, (u,v) will be
considered and BF'S finds the shortest path.

Inductive Step: Assume IH is true for [= k. Consider a vertex v at distance k + 1 to u. The shortest
path from u to v has length k 4+ 1. Consider w, the vertex immediately before v on the shortest path. The
distance from u to w is k. By IH, BFS finds shortest path from u to w. Now consider the time w is processed
in BFS.

e If v is already in the queue, v is added to the queue by a vertex w’ that is processed before w. By
design, dis(u,w’) < dis(u,w) = k. Therefore, BFS finds a path of length < k + 1.

e If v is not in the queue, BFS will add v to the queue and find a path of length k£ + 1.

