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Overview

In this lecture, we compare breath-first search (BFS) and depth-first search (DFS), two ways to traverse a
graph, and study their applications.

11.1 Applications of Depth-First Search

In the previous lecture, we detailed the DFS algorithm and introduced the notion of pre-order and post-
order. To present our first application of DFS, we first observe that the edges we traverse as we execute a
DFS can be classified into four types. During a DFS execution, the classification of edge (u, v), depends on
whether we have visited v before in the DFS and if so, the relationship between u and v.

1. If v is visited for the first time as we traverse the edge (u, v), then the edge is a tree edge.

2. Else, v has already been visited:

(a) If v is an ancestor of u, then edge (u, v) is a backward edge.

(b) Else, if v is a descendant of u, then edge (u, v) is a forward edge.

(c) Else, if v is neither an ancestor or descendant of u, then edge (u, v) is a cross edge.

Consider the following example: given directed graph on the left.

The tree formed by the solid edges on the right is a DFS tree, constructed by a DFS algorithm starting from
vertex s. If we break ties by alphabetical order, then the pre-order of this DFS traversal would be s, a, b, c, d
and the post-order would be b, c, a, d, s. The solid edges are tree edges. (s, c) is a forward edge, (b, s) is a
backward edge and (d, c) is a cross edge.

Similar to the struture of the DFS tree and the pre-/post-order, edge types also depend on the choices made
in the DFS algorithm. We are now ready to introduce the first application of DFS: cycle finding.
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11.1.1 Cycle Finding

In short, graph G has a cycle if and only if DFS finds at least one backward edge. The algorithm is precisely
defined below.

Algorithm: DFS visit(u)

Mark u as visited;
Mark u as in stack;
for each edge (u, v) do

if v is in stack then
(u, v) is a backward edge, found a cycle

end
if v is not visited then

DFS visit(v)
end

end
Algorithm: DFS

for u = 1 to n do
if u is not visited then

DFS visit(u)
end

end

Theorem 11.1 A directed graph G contains cycles iff DFS visit on G finds backward edges.

Proof: For one direction, observe that if there exists a backward edge in the DFS tree, then there is a cycle
in the graph. For the other direction, suppose that there exists a cycle {u1, u2, . . . , ul, u1} in the graph and
wlog let u1 be the first vertex visited by DFS on this cycle. Then all other vertices in the cycle u2, . . . ul

are descendants of u1 in the DFS tree. Since edge (ul, u1) is in the graph, it must be a backward edge by
definition.

11.1.2 Topological Sort

Given a directed acyclic graph, we want to output an ordering of vertices such that all edges are from an
earlier vertex to a later vertex. For example, consider the graph below.
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One possible topological ordering would be f, g, b, a, c, d, e, h. This is, in fact, the reverse of the post-order
output by a DFS. In fact, every reverse post-order is a valid topological sort. We will prove this by proving
the following lemma.

Lemma 11.2 For every edge (u, v), u must be later than v in post-order.

Proof: Assume towards contradiction that there is an edge (u, v) where u is before v in post order.

• If u is visited before v. By the base case of the previous lemma, u is on the stack when v is visited.
Therefore, u is after v in post order.

• If u is visited after v, then 1) visit v, then 2) visit u, then 3) DFS visit(u) returns, then 4) DFS visit(v)
returns is the only possible sequence of events. This means when u is visited, v is on the stack. By
DFS algorithm, there is a path from v to u, but (u, v) is also an edge. So the v-u path and edge (u, v)
form a cycle. This contradicts with the assumption that the graph is acyclic.

11.2 Breath-First Search

Another way to traverse a graph is via Breath-First Search (BFS). In BFS, at any vertex, we visit its
neighbors first (before its neighbors’ neighbors.)

Algorithm: BFS visit(u)

Mark u as visited;
Put u into a queue;
while queue is not empty do

Let x be the head of the queue;
for all edges (x, y) do

if y has not been visited then
Add y to the queue;
Mark y as visited;

end

end
Remove x from the queue;

end
Algorithm: BFS

for u = 1 to n do
BFS visit(u);

end

11.3 Applications of Breath-First Search

To introduce an application of BFS, we first introduce the idea of a BFS tree. If y is added to the queue
while examining x, then (x, y) is an edge in the BFS tree.

11.3.1 Shortest Path

Given a graph as well as pair of edges, we want to find the path between them that minimizes the number
of edges. BFS helps us to find exact that.
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Lemma 11.3 From starting point u, BFS finds the shortest path from u to every v reachable from u.

Proof: We will again prove this by induction.

Induction Hypothesis: BFS finds shortest path from u to every v at a distance ≤ l.

Base case: When l = 1, (u, v) is an edge. Since BFS first considers all neighbors of u, (u, v) will be
considered and BFS finds the shortest path.

Inductive Step: Assume IH is true for l = k. Consider a vertex v at distance k + 1 to u. The shortest
path from u to v has length k + 1. Consider w, the vertex immediately before v on the shortest path. The
distance from u to w is k. By IH, BFS finds shortest path from u to w. Now consider the time w is processed
in BFS.

• If v is already in the queue, v is added to the queue by a vertex w′ that is processed before w. By
design, dis(u,w′) ≤ dis(u,w) = k. Therefore, BFS finds a path of length ≤ k + 1.

• If v is not in the queue, BFS will add v to the queue and find a path of length k + 1.


