COMPSCI 330: Design and Analysis of Algorithms

Lecture 13: Shortest Path, Minimum Spanning Tree
Lecturer: Rong Ge Scribe: Mo Zhou

1 Overview

In this lecture, we will first learn how to compute the shortest path when there are negative edge
weights, and then start to talk about Minimum Spanning Trees (MST).

2 Shortest Path with Negative Edge Length

We have learned Dijkstra algorithm, which can compute the shortest path from a source to all other
nodes in the graph when the edge weights are non-negative. However, when there are negative edge
weights, Dijkstra algorithm will fail. To develop an algorithm that can deal with negative edge
lengths, let us first look at a motivating example.

2.1 Motivating Example: Arbitrage

In our example, arbitrage is defined as making profits only through currency exchange. Specifically,
let (w1, ug, - -+ ,ux) be the order of currency exchange, i.e., you have 1 unit of u; initially, then change
it to ug, then ug, - - -, until you change it to uy. Let c¢(u;, u;) > 0 be the exchange rate, i.e., you can
use ¢(u;, u;) unit of u; can be used to get 1 unit of u;. Thus, if you change the money according to
this path, the final amount of u; you get will be

1 1 1

c(ui,ug) c(ug,ug) c(ug—1,ur)

If we define w(u,v) = log c¢(u, v), then

1 1 1
log : e > w(ui,uigs).

c(u,uz) c(ug,us) c(ug—1,ur) B i—1

Note that Zle w(ui, ui41) is the length of the path (uq,ug,--- ,ug). Therefore, the shortest path
from u; to wug is actually the best way to exchange currency if you want to use u; to get wug.
Furthermore, when uq = wuyg, arbitrage is possible if and only if the cycle length is negative. The
negative cycles are closely related to shortest paths, and we will see their relationship in the next
section.

2.2 Relationship between Shortest Path and Negative Cycles
Definition 1. A cycle (u1,us9,- - ,ui) is a negative cycle if Zf:_ll w(ui, Uit1) + w(ug, ug) < 0.

Claim 1. If s can reach a negative cycle (u,ug,--- ,uy), then the shortest path from s to any w;
is not defined.

Lecture 13: Shortest Path, Minimum Spanning Tree-1

Figure 1: Example Negative Cycle and Shortest Path

Proof. See Figure 1 for an example. First we start from s and reach u;, and assume the path has
length [. Then we follow the negative cycle many times. Assume that the cycle length is ¢ < 0,
then after ¢ times of following the cycle, the total length from s to u; is [+ ct. As t grow to infinity,
the length of the path will tends to minus infinity, or equivalently, we say the shortest path from s
to any u; is not defined. O

2.3 Shortest Path with Negative Edge But No Negative Cycle

(b) Shortest Path Tree by Running Dijk-

(a) Example Graph stra’ Algorithm on the Left Graph

Figure 2: Shortest Path with Negative Edge But No Negative Cycle

When there are negative edges but no negative cycle in a graph, Dijkstra’s algorithm might fail.
For instance, consider the graph in Figure 2a, running Dijkstra;s algorithm on this graph will get
a ”shortest path tree” shown in Figure 2b. This tree gives us a ”shortest path” from s to a with
length 4. However, we know that there is a path s — b — ¢ — a, which has length 6 +1 — 4 = 3.
This indicates that Dijkstra’s algorithm fails to return the correct shortest path on this graph.

2.4 Bellman-Ford Algorithm
2.4.1 Algorithm Description

Bellman-Ford Algorithm is a Dynamic Programming algorithm that can deal with the negative
edge lengths when computing the shortest paths in a graph. The motivation of this algorithm is:
The sub-paths of a shortest path is also a shortest path, otherwise we can replace that sub-path
with the actual shortest path and violates the assumption that the original path is the shortest
path.

State Definition: Define d[v, i] to be the length of shortest path from s to v using at most i edges.
Transition Function: d[v,i + 1] = min{d[v, i], min, . ep wlu, v] + d[u, i]}.

Lecture 13: Shortest Path, Minimum Spanning Tree-2

Pseudocode:
Initialize d[s, 0] = 0, d[u, 0] = +oo for all other vertices u;
for i=1 to n do
Initialize d[u, 1] = d[u,i — 1];
for all edges (u,v) do
if wlu,v] 4+ d[u,i — 1] < d[v,] then
| d[v,i] = wlu,v]+d[u,i-1];
end

end
end

if there is a vertex w such that d[u,n] # dlu,n — 1] then
| There is a negative cycle!

end
Algorithm 1: Bellman-Ford Algorithm

2.4.2 Example Run

We run Bellman-Ford Algorithm on the graph in Figure 2a. Then, the dynamic programing table
d(u,1) will be the following:

d(u,i) | s | a b c
0 0| +oo | +oo | +00
1 0 4 6 +00
2 0 4 6 7
3 0 3 6 7
4 0 3 6 7

2.4.3 Proof of Correctness

The correctness of Bellman-Ford algorithm directly comes from the following theorem.

Theorem 2. If the graph does not have any negative cycle, then d[u,n — 1] will be the shortest
path distance from s to u. Also, d[u,n] = du,n — 1] for any vertex w.

On the other hand, if there is a negative cycle reachable from s, there exists vertex u such that
dlu,n] < d[u,n — 1J.

Proof. The prove can be divided into three parts.

(1) Prove that d[v,] is indeed the length of shortest path from s to v using at most 7 edges. Since
Bellman-Ford algorithm is a Dynamic Programming algorithm, this part of the proof is exactly the
same as the correctness proof of a Dynamic Programming algorithm. Thus, it’s omitted here for
simplicity.

(2)

Claim 3. If there is no negative cycles in the graph, then the shortest path from s to u has length
at most n — 1.

Lecture 13: Shortest Path, Minimum Spanning Tree-3

Figure 3: Example Shortest Path

Proof of Claim. Assume toward contradiction that the shortest path from s to u has length at least

n. Then the number of nodes on the path is at least n+1. By Pigeonhole principle, at least one ver-

tex v was visited at least twice. Assume the shortest pathis py = (s, u1, - , Ut, V, V1, -+, Vg, U, Upg1, - -+, Ug, U),
see an example in Figure 3. Compare the length of the path p; and py = (s, u1, -+, us, v, U1, -, Ug, U),
which are two valid paths from s to u. The difference of the length of p; and ps is the length of

cycle (v,v1,- -+ ,vk). Since p; is the shortest path, po must has a larger of equal length than p;. If

pe is longer than pp, that means cycle (v, v1,--- ,vk) is a negative cycle, which is a contradiction.

If the length of those two paths are equal, then we can without loss of generality delete that cycle.

In other words, our claim is correct. O

(3) If there is a negative cycle reachable from s, assume that circle is (u1,ug,- - ,u). You can still
refer to Figure 1 as an example. Since it’s a negative cycle, we know that

w(ur, uz) + w(ug, ug) + -+ - + wlug, ur) < 0.
Thus,

[ui,n — 1] +w[ui,ui+1],Vi e{1,2,--- k—1}

d[uiﬂ,n] d
d[’LLk, n— 1} + W[Uk, U1]~

<
dlui,n] <

Take the sum and we get

k k k
Zd[ui,n] < Zd[ui,n — 1] + length of cycle < Zd[ui,n — 1],
i=1 i=1 i=1
which indicates that there at least exist one ¢ such that d[u;,n] < d[u;,n — 1]. O

2.4.4 Running Time Analysis

The algorithm runs O(n) iterations of update to the values, and each iteration costs O(m) time
because it updates m times and each update takes constant time. Thus, the total running time for
this algorithm is O(mn).

3 Minimum Spanning Tree

Minimum Spanning Tree (MST) is a spanning tree with the minimum total weight. In this section,
we will first learn the definition of a spanning tree and then study some properties for Minimum
Spanning Tree, which will be useful in proving the correctness of MST algorithms.

Lecture 13: Shortest Path, Minimum Spanning Tree-4

< :

Figure 4: Example Graph Figure 5: Example Spanning Tree 1

2 1 2
3
9] 4

Figure 6: Example Spanning Tree 2 Figure 7: Example Spanning Tree 3

3.1 Spanning Tree

Definition 2. A spanning tree of a graph G = (V, E) is a subset of n — 1 edges in E, such that all
pairs of vertices are connected by these edges.

An example can be seen in Figure 4. The example spanning trees are Figure 5 through 7.
There are usually many possible spanning trees for a graph, e.g., DFS trees and BFS trees. In this
particular example, it’s easy to see that the MST is Figure 7. That is because the MST must have
3 edges and the best you can hope for is when the edge weights are 1, 2, and 3. However, that is
not a valid spanning tree because it is a cycle. Thus, the next smallest will be 1, 2, and 4, which
is valid.

3.2 Properties for MST

Claim 4. The subtrees of MST are also MST. See Figure 8 for an example, the nodes with the
same color forms a MST of the subgraph containing the same set of vertices.

Proof. The proof of this is similar to the proof of the sub-paths of shortest path are shortest paths.
Assume by contradiction that one subtree of MST is not MST, then we replace that subtree with
the true MST for that subgraph and get a smaller spanning tree for the original graph, which is a
contradiction. O

However, that does not mean this problem can be solved by dynamic programming. The main
difficulty is that we are not able to know how to partition the nodes into subgraphs, and the possible

Lecture 13: Shortest Path, Minimum Spanning Tree-5

Figure 8: Subtrees of MST

number of partitions are exponential. Instead, the following property makes sure that this problem
can be solved using Greedy algorithm.

3.3 Cuts in Graphs

Definition 3. A cut is a subset of edges that separates the vertices into two parts. It is specified
with two set of vertices: a set of vertices S and the remaining vertices S, and a cut is defined as

c(S,S) = {(u,v) € Elu € S,v € S}.
If (u,v) € B, u €S, v e S, wesay edge (u,v) “crosses” the cut (S9,9).

Claim 5. For any spanning tree T, any cut (S, S), there must be at least one edge (u,v) in both
T and (S,59).

Proof. Assume by contradiction that the spanning tree does not contain any edge in the cut, then
in that spanning tree, the nodes in S are disconnected with the nodes in S, which contradicts the
definition of a spanning tree. O

An important property of trees is: Adding a non-tree edge to a tree will form a cycle, and
removing any edge from that newly-formed cycle will result in a new tree. This is the “swap”
operation that we use to prove the correctness of a greedy algorithm. Thus, the MST can probably
be constructed using a greedy algorithm. Then we have the following lemma:

Lemma 6. Suppose F is a set of edges that is inside some MST T, if (S, S) is a cut that does not
contain any edge in F' and e is the minimum cost edge in the cut, then it is safe to add e to F, i.e.,
Fu{e} c T for some MST T".

We will not prove the lemma formally here, but the main intuition is: If a non-minimum edge
was added to the tree and the minimum was not, then we can always “swap” them. That gives us
the following greedy algorithm for MST:

repeat

Find a cut that does not have any edge in the current tree;
Add the min cost edge of the cut to the tree;

until the tree has n — 1 edges;
Algorithm 2: Greedy Algorithm for MST

Lecture 13: Shortest Path, Minimum Spanning Tree-6

Figure 9: Example Run of Greedy Algorithm for MST

An example run is performed in Figure 9. The upper-left corner is the original graph. For the
other three graphs, the red vertices are those in .S and the blue vertices are in S. The newly-added
edge in those graphs are the minimum edges in the cut. Finally, we got the correct MST.

Lecture 13: Shortest Path, Minimum Spanning Tree-7

	Overview
	Shortest Path with Negative Edge Length
	Motivating Example: Arbitrage
	Relationship between Shortest Path and Negative Cycles
	Shortest Path with Negative Edge But No Negative Cycle
	Bellman-Ford Algorithm
	Algorithm Description
	Example Run
	Proof of Correctness
	Running Time Analysis

	Minimum Spanning Tree
	Spanning Tree
	Properties for MST
	Cuts in Graphs

