
Lecture 1: Asymptotic Notations, Euclid’s
Algorithm

Scriber: Mo Zhou

January 8, 2020

1 Asymptotic Notations
The Asymptotic Notations are notations that measures roughly how much time or space
an algorithm requires. Thus, we will only keep the most weighted term of a function.
Usually, we use f (n) to represent the running time of an algorithm on an input of size
n. E.g., in Asymptotic Notation, n2 is similar to 3n2 +5n, but is not similar to 2n. The
intuition can be seen in the two figures below: n2 and 3n2 +5n shares similar speed of
growth, while 2n grows more quickly.

1.1 Definitions
Definition 1. f (n) = O(g(n)), if there exist constants C > 0 and n0 ≥ 0 such that for
every n≥ n0, f (n)≤C ·g(n).

This definition can be roughly considered as “ f (n)≤ g(n)”.

Definition 2. f (n) = Ω(g(n)), if there exist constants C > 0 and n0 ≥ 0 such that for
every n≥ n0, f (n)≥C ·g(n).

This definition can be roughly considered as “ f (n)≥ g(n)”.

Definition 3. f (n) = Θ(g(n)), if f (n) = O(g(n)) and f (n) = Ω(g(n)).

This definition can be roughly considered as “ f (n) = g(n)”.

1.2 Examples
(1) There’s a useful inequality in asymptotic notations (also see figure 1)

logn <
√

n < n < n logn < n2 < n3 < 2n < n!.

(2) f (n) = 3n2 +6n, then f (n) = O(n2).

Proof. Let C = 9, n0 = 1, then for any n≥ n0, we have n2 ≥ n. Thus,

f (n) = 3n2 +6n≤ 3n2 +6n2 = 9n2 = 9 ·g(n).

1

10 20 30 40 50 60

20

40

60

log2 n
√

n

n

n2

2n

n

f (n)

10 20 30 40 50 60

20

40

60

n
n2

2n

3n

n!

n

log(f (n))

Figure 1: logn <
√

n < n < n logn < n2 < n3 < 2n < n!.

(3) f (n) = n log2 n, then f (n) 6= O(n).

Proof. For every C > 0, n0 > 0, we can choose n such that n ≥ n0 and n > 2C. This
implies that log2 n >C. For this n, we have

n log2 n >Cn,

which contradicts with the definition of f (n) = O(n).

1.3 The Benefit of Asymptotic Notations
Consider the following algorithm,

for i = 1 to n-1

for j = i+1 to n

do something (running time: 1)

We first could compute the exact running time. Each round, the inner loop will run
n− i times in each outer loop round while i goes from 1 to n−1. Thus,

f (n) = (n−1)+(n−2)+ ...+1 =
n(n−1)

2
.

Now, let us try to use asymptotic notations to compute f (n). In the summation
above, each term is smaller than n, so

f (n)≤ n+n+ · · ·+n = n(n−1)≤ n2⇒ f (n) = O(n2).

(In the right hand side of the first inequality above, there are (n−1) number of ns)
Compare to computing the exact f (n), it is much easier to show f (n) =O(n2) when

using asymptotic notations. Sometimes the algorithm becomes more complicated so
there’s not always a smart way to obtain an accurate result, e.g., if our algorithm calls
some other algorithm as subroutine whose exact running time is difficult to get, then
the accurate running time of total algorithm will be hard to compute. However, by
using asymptotic notation, we can obtain a bound for running time more easily and for
more occasions.

2

2 Euclid’s Algorithm
The Euclid’s Algorithm is an algorithm for computing greatest common divisor (gcd)
of 2 positive integers, which is the largest number c that divides both a and b. For
example,

gcd(12,20) = 4,

since 12/4 = 3 and 20/4 = 5.

2.1 Algorithm

Algorithm 1 gcd(a,b) (Euclid’s Algorithm)
1: if b == 0 then
2: return a
3: else
4: return gcd(b,a mod b)

Example Run:

gcd(12,20) = gcd(20,12) = gcd(12,8) = gcd(8,4) = gcd(4,0) = 4.

2.2 Proof of Correctness
Proof. We will use induction to prove the correctness of Euclid’s algorithm. The in-
duction hypothesis is the following:

Induction Hypothesis (IH): For any b ≤ n, gcd(a,b) computes the greatest common
divisor of a and b correctly.

Base Case:
If b = 0, then gcd(a,0) = a, which is correct.

Induction:
Suppose the IH is true for b≤ n. We want to prove IH is also true for b = n+1. When
b = n+ 1, the algorithm outputs gcd(b,a mod b). Since 0 ≤ a mod b ≤ n, by IH we
know Euclid’s algorithm computes gcd(b,a mod b) correctly.

Therefore, we only need to show gcd(a,b) = gcd(b,a mod b). We do that by show-
ing that the set of common divisors for (a,b) and (b,a mod b) are the same, which is
to say:
(1) If k is a common divisor of (a,b), then k is also a common divisor of (b,a mod b).
(2) If k is a common divisor of (b,a mod b), then k is also a common divisor of (a,b).

Proof of (1): By definition we know a mod b = a− zb for some integer z, so

a mod b
k

=
a− zb

k
=

a
k
− z

b
k
.

3

Since k is a common divisor of (a,b), a
k and b

k are integers. Hence a mod b
k = a

k − z b
k is

also a integer, which means k divides both b and a mod b.
Proof of (2): By definition we know a mod b = a− zb for some integer z, so

a
k
=

(a mod b)+ zb
k

=
a mod b

k
+ z

b
k
.

Since k is a common divisor of (b,a mod b), b
k and a mod b

k are integers. Hence a
k =

a mod b
k + z b

k is also an integer, which means k divides both a and b.
In a word, gcd(a,b) = gcd(b,a mod b), so by induction, Euclid’s algorithm is cor-

rect.

4

