- Reductions - A can be reduced to B, if given a solution to B, can use that to solve problem A. A (input to problem A) do anything on input call B(...) do something with output call B(1...) return correct answer to A - example: $\angle IS$ to $\angle CS$ $X=\{5,2,3,6,4,7\}$ $\angle IS=4\{2,3,6,9\}$ - reduction LIS(X[]) (= Merge Sort(X) yeturn LCS(X,Y) LCS(XtJ, YtJ) $Y = \{2, 3, 4, 5, 6, 9\}$ $LCS(\{5, 2, 3, 6, 4, 9\}, \{2, 3, 4, 5, 6, 9\})$ $= 4 \quad \{2, 3, 6, 9\} \quad (n^{2})$ (best) runtime for LIS < (best) runtime for LCS + (nlogn) - A can be reduced to B, reduction time small "easier" "no harder than" ## runtine A & O (runtine for B) - complexity class, easy us. hard problems - P: set of decision problems that can be solved in polynomial time. - NP: set of décision problems whose solution can be verified in polynomial time. Accept if solution verifier polynomial recorred. Solution output of NP problem YES if \exists solution s.t. venifier(input, solution) accepts > if for any solution verifier (input, solution) rejects. - PENP, believe PCNP - polynomial time reduction: convert input X of A to input Y of B in polytime, return B(Y).