- Reductions

- A can be reduced to B, if given a solution to B, can use that to solve problem A.

A (input to problem A)

do anything on input

call B(...)

do something with output

call B(1...)

return correct answer

to A

- example: $\angle IS$ to $\angle CS$ $X=\{5,2,3,6,4,7\}$ $\angle IS=4\{2,3,6,9\}$

- reduction

LIS(X[])

(= Merge Sort(X)

yeturn LCS(X,Y)

LCS(XtJ, YtJ)

 $Y = \{2, 3, 4, 5, 6, 9\}$ $LCS(\{5, 2, 3, 6, 4, 9\}, \{2, 3, 4, 5, 6, 9\})$ $= 4 \quad \{2, 3, 6, 9\} \quad (n^{2})$

(best) runtime for LIS < (best) runtime for LCS + (nlogn)

- A can be reduced to B, reduction time small

"easier" "no harder than"

runtine A & O (runtine for B)

- complexity class, easy us. hard problems
 - P: set of decision problems that can be solved in polynomial time.
 - NP: set of décision problems whose solution can be verified in polynomial time.

Accept

if solution

verifier

polynomial

recorred.

Solution

output of NP problem

YES if \exists solution s.t. venifier(input, solution) accepts

> if for any solution verifier (input, solution) rejects.

- PENP, believe PCNP
- polynomial time reduction: convert input X of A to input Y of B in polytime, return B(Y).