Lecture 23 Classical NP-Hard Problems

April 2020

1 Hamiltonian Path to TSP Cycle

1.1 Problem Analysis

Hamiltonian Path: Given a graph G (directed/undirected), a start vertex s and an end vertex t, find a path from s to t that visits every vertex in G exactly once.

Travelling Salesman Problem: Given a weighted graph G, and there is a salesman who wants to start at a vertex s, visit all vertices and come back to s. **Similarity:** Visit all vertices

Differences:

- 1. Hamiltonian Path is on unweighted graphs while TSP is on weighted graphs
- 2. Path vs. Cycle

1.2 Proof

Given a Hamiltonian Path instance with n vertices. To make it a cycle, we can add a vertex x, and add edges (t,x) and (x,s). To make the path weighted, we can give a weight 1 to all edges. Set L=n+1, we now have a TSP cycle instance.

Thus we can conclude that for any Hamiltonian path P in the original graph, the new set of edges $P \cap (t,x), (x,s)$ form a TSP cycle of length L=n+1 For any cycle of length n+1 that visits every vertex, it must visit every vertex exactly once. Cut the cycle when it visits vertex x, (either by (t,x) or (x,s)). We can thus get a path from s to t that visits every vertex in the original graph exact once.

2 3-SAT to quadratic programming

2.1 Problem Analysis

2.1.1 3-SAT Problem

example: $(X_1 \vee X_2 \vee \overline{X_3}) \wedge (X_2 \vee \overline{X_3} \vee \overline{X_4}) \wedge \dots$

clause: or of 3 literals literal: X or \overline{X}

formula: logical and of many clauses

goal: is there any assignment to the variable such that all clauses are satisfied.

2.1.2 Quadratic Programming

variables: $x_1, x_2, ..., x_n \in \mathcal{R}$

constraints:

$$x_1^2 \le 3$$

$$x_1^2 + 2x_1x_2 - x_2^2 \ge 5$$

$$x_1^2 - 2x_2 \ge x_3^2 - x_2x_3$$
.....

goal: Is there an assignment to the variables such that all constraints are satisfied.

2.1.3 Comparison

- 1. boolean variables vs. real variables
- 2. 3-SAT clauses vs. quadratic constraints

Decision Problem: Given a set of quadratic constraints, does there exist a feasible solution for 3-SAT?

2.2 Reduction

In order to create an instance of Quadratic programming from an instance of 3-SAT, we need to add constraints to make the real variables binary (0/1) but adding constraint $y_i^2 = y_i$ for all variables y_i . The negation of the variables in 3-SAT clauses thus becomes $1 - y_i$ in quadratic constraints.

Thus, for every clause in 3-SAT, we thus create a quadratic constraint out of it. For instance, from the clause $x_a \vee x_b \vee \overline{x_c}$ we can create a constraint $y_a + y_b + (1 - y_c) \ge 1$.

3 Tripartite matching to subset vector

3.1 Problem Analysis

3.1.1 Tripartite matching

Given three sets U, V and W, each containing n vertices, and hyperedges (u, v, w), where $u \in U$, $v \in V$ and $w \in W$. A tripartite matching is a way of selecting n hyperedges, so that every vertex is adjacent to a hyperedge. If we want to use n hyperedges to cover all 3n vertices, then we must use exactly one vertex is each of the n edges. Is there is a tripartite matching in the given graph?

3.1.2 Subset Vector

Given n vectors $\{v_1, v_2, ..., v_n\}$ and a target vector u. The answer is YES iff a subset of these vectors sums up to u.

3.1.3 Comparison

- 1. select hyperedges vs. select vectors
- 2. exact n hyperedges vs. select any number of vectors.

Idea: Encode hyperedges as vectors. For each hyperedges, it includes 3 out of 3n vertices. Thus, we can convert each hyperedge to a one-hot encoding the vertices in the edge. The encoding will be vectors of 3n dimension. For instance, for edge (u_1, v_1, w_1) , the encoding E will have 0s in all other indices while E[0], E[n+1], E[2n+1] will be 1s.

Thus, selecting n hyperedges in order for every vertex in the graph is adjacent to exactly 1 hyper-edge is equivilent to having the sum of these hyper-edge encoded vectors equals to $\vec{1}$.

4 Subset vector to subset sum

4.1 Problem Analysis

4.1.1 Subset vector

Given n vectors $\{v_1, v_2, ..., v_n\}$ and a target vector u. The answer is YES iff a subset of these vectors sums up to u.

4.1.2 Subset sum

Given n integers $\{a_1, a_2, ..., a_n\}$ and a target m. The answer is YES iff a subset of these integers sums up to m.

4.1.3 Comparison

- 1. Any integer can be viewed as a vector if we take its base B representation. For instance, integer 9, if in base 2, can be seen as a vector [1,0,0,1].
- 2. Sum of numbers are thus, behave like sum of vectors as long as there is no carry operation.
- 3. When B is very large, when taking sums, there will be no carry operation.