# Lecture 3: Divide and Conquer 2

Scriber: Xiaoming Liu January 27, 2020

# 1 Integer Multiplications

Problem statement: Given two n-digit numbers x and y, find their multiplication.

### 1.1 Naive Recursive Approach

Suppose we are given a = 123456 and b = 654321. While a and b can be rewritten as a = 123\*1000+456 and b = 654\*1000+321 respectively, and thus the multiplication can be rewritten as a\*b = 123\*654\*106+(123\*321+456\*654)\*103+456\*321.

To generalize the multiplication, we assume n is a power of 2 without the loss of generality and we can partition a and b respectively into their upper and lower digits, i.e,  $a = a_{upper} * 10^{n/2} + a_{lower}$  and  $b = b_{upper} * 10^{n/2} + b_{lower}$ .

The recursive multiplication algorithm is thus:

```
Algorithm 1 Recursion

Result: multiplication of a and b
Assume n = length(a) = length(b). Pad 0's for shorter number;

if length(a) := 1 then

| return a * b;

else

| partition a into a = a_{upper} * 10^{n/2} + a_{lower}

| partition b into b = b_{upper} * 10^{n/2} + b_{lower}

| A = Recursion(a_{upper}, b_{upper})
| B = Recursion(a_{lower}, b_{upper})
| C = Recursion(a_{lower}, b_{lower})
| D = Recursion(a_{lower}, b_{lower})
| return A * 10^n + (B + C) * 10^n / 2 + D

end
```

The time complexity of the algorithm can thus be represented as:

$$T(n) = 4T(\frac{n}{2}) + O(n)$$

The recursion tree can be illustrated as follows:



Figure 1: Recursion Tree

As illustrated in the figure above, the recursion tree has a depth of  $log_2^n$ . The overall complexity is thus:

$$T(n) = \sum_{i=0}^{\log_2^n} 4^i A \frac{n}{2^i}$$

$$= An \sum_{i=0}^{\log_2^n} 2^i$$

$$= An(2n-1)$$

$$= O(n^2)$$
(1)

## 1.2 Improved Recursive Approach

We can improve the algorithm by doing one of the following:

- 1. Merging faster: However, this is not the bottleneck for integer multiplication. O(n) is not large.
- 2. Make subproblems smaller: If we do this naively, then that would result in more number of subproblems which defeats the purpose.
- 3. Decrease the number of subproblem: We see the details below.

The improved algorithm is as follows:

#### Algorithm 2 Recursion

Result: multiplication of a and b

Assume n = length(a) = length(b). Pad 0's for shorter number;

```
if length(a) j=1 then j=1 return a * b; else j=1 partition a into j=1 into j=1 partition b into j=1 partition b into j=1 partition b into j=1 partition j=
```

The time complexity of the algorithm can thus be represented as:

$$T(n) = 3T(\frac{n}{2}) + O(n)$$

Thus,

$$T(n) = \sum_{i=0}^{\log_2^n} 3^i A \frac{n}{2^i}$$

$$= An \sum_{i=0}^{\log_2^n} (\frac{3}{2})^i$$

$$= O(n \frac{3}{2}^{\log_2^{\frac{3}{2}}})$$

$$= O(n^{\log_2^{\frac{3}{2}}})$$

$$= O(n^1.585) << O(n^2)$$
(2)

#### 1.3 Master Theorem

**Theorem**: If T(n) = aT(n/b) + f(n), then

1. 
$$f(n) = O(n^c), c < log_b^a$$
, then  $T(n) = \Theta(n^{log_b^a})$ 

2. 
$$f(n) = \Theta(n^c \log^t(n)), c = \log_b^a$$
, then  $T(n) = \Theta(n^{\log_b^a} \log^{t+1}(n))$ 

3. 
$$f(n) = \Theta(n^c), c > log_b^a$$
 then  $T(n) = \Theta(n^c)$ 

For case 1 and case 3 of the master theorem, the recursion tree can be illustrated as follows. The recursion tree can be illustrated as follows:



Figure 2: Generalized Recursion Tree for case 1 and 3

For case 2 of the master theorem, the recursion tree can be illustrated as follows. The recursion tree can be illustrated as follows:



Figure 3: Generalized Recursion Tree for case 2