Lecture 3: Divide and Conquer 2

Scriber: Xiaoming Liu

January 27, 2020

1 Integer Multiplications

Problem statement: Given two n-digit numbers x and y, find their multiplication.

1.1 Naive Recursive Approach

Suppose we are given a = 123456 and b = 654321. While a and b can be rewritten as
a=123%1000+456 and b = 654+ 1000+ 321 respectively, and thus the multiplication
can be rewritten as a* b = 123 %654 % 106 + (123 321 + 456 % 654) % 103 4456« 321.

To generalize the multiplication, we assume n is a power of 2 without the loss of
generality and we can partition a and b respectively into their upper and lower digits,

i.e, a = upper * 10"2 4+ appper and b = bupper * 10"2 4+ byyrer-

The recursive multiplication algorithm is thus:

Algorithm 1 Recursion
Result: multiplication of a and b
Assume n = length(a) = length(b). Pad 0’s for shorter number;

if length(a) ;= I then
| returna *b;
else
partition a into @ = aypper * 10"% 4 ajgyper
partition b into b = bypper * 102 +-bjgyer
A = Recursion(aupper, bupper)
B = Recursion(ajower, bupper)
C = Recursion(aypper; biower)
D = Recursion(apwer, Prower)
return A * 10" + (B4 C) 10(n/2) + D

end

The time complexity of the algorithm can thus be represented as:

T(n) =4T(5)+0(n)

The recursion tree can be illustrated as follows:

n/2

%ﬁmmmmmnﬁmm%mnmm
] AN N \ N \

Figure 1: Recursion Tree

As illustrated in the figure above, the recursion tree has a depth of log5. The overall
complexity is thus:

logh n
T(n)=) 4A—
i=0 2

logh

=AnY 2 M
i=0

=An(2n—1)
=0(n?)

1.2 Improved Recursive Approach
We can improve the algorithm by doing one of the following:

1. Merging faster: However, this is not the bottleneck for integer multiplication.
O(n) is not large.

2. Make subproblems smaller: If we do this naively, then that would result in more
number of subproblems which defeats the purpose.

3. Decrease the number of subproblem: We see the details below.

The improved algorithm is as follows:

Algorithm 2 Recursion

Result: multiplication of a and b
Assume n = length(a) = length(b). Pad 0’s for shorter number;

if length(a) ;= 1 then
| returna * b;

else

partition a into a = a,pper * 10"2 4 ajprper
partition b into b = bypper * 102 4+ bjgyer
A = Recursion(aupper, bupper)
B = Recursion(ajpwer, Prower)

10(n/2) +B
end

C = Recursion(aupper + Aiower, Pupper + biower) return A x 10" + (C —A — B) *

The time complexity of the algorithm can thus be represented as:
T(n) =3T(5)+0(n)

Thus,

= 0(n%)
= 0(n'.585) << O(n?)

1.3 Master Theorem

Theorem: If T(n) = aT (n/b) + f(n), then
L. f(n)
2. f(n) = O(nlog' (n)),c = logy, then T (n) = @(n*log'*! (n))

0(n°), ¢ < logt, then T (n) = ©(n'?%%h)

O(n°),c > logj then T (n) = O(n°)

2

For case 1 and case 3 of the master theorem, the recursion tree can be illustrated as

follows. The recursion tree can be illustrated as follows:

. c
()

o n
a nodes of size > each

Figure 2: Generalized Recursion Tree for case 1 and 3

For case 2 of the master theorem, the recursion tree can be illustrated as follows.
The recursion tree can be illustrated as follows:

nclog(t)™

n C n,
() log(®™"

n C n,
()Flog®™?

n c n,
()‘log(®)™?

Figure 3: Generalized Recursion Tree for case 2

