
Lecture 6: Dynamic Programming 3

Scriber: Xiaoming Liu

Feb 9, 2020

1 Longest Common Subsequence(LCS)
Problem statement: A subsequence is a sequence that can be derived from another
sequence by deleting some elements without changing the order of the remaining el-
ements. Longest common subsequence (LCS) of 2 sequences is a subsequence, with
maximal length, which is common to both the sequences. Given two sequences a and
b, find the longest common subsequence.

State Description: Let F [i, j] be length of the longest common sequence for a[1...i]
and b[1... j].

Analysis: There are three possible cases.

1. Last character of a[] is not in LCS. e.q. LCS = LCS(’ababcd’, ’abbecd’).

2. Last character of b[] is not in LCS. e.q. LCS = LCS(’ababcde’, ’abbec’).

3. Last characters of. both a[] and b[] are in LCS. The case only happens if the last
characters are equal. e.q. for a[] = ’ababcd’, b[] = ’abbecd’, LCS = LCS(’ababc’,
’abbec’) + ’d’

Transition Function

{[i, j] = max


{[i−1, j]
{[i, j−1]
{[i−1, j−1]+1(if a[i] == b[i])

Base Case {
f [0, j] = 0 ∀0 < j <= length(b)
f [i,0] = 0 ∀0 < i <= length(a)

Running Time:

O(n∗m)(number of possible states) * O(1)(time to compute each state)

1

2 Voice Recognition
Problem statement: Given n segments of sounds, output the phonemes. Each sound
might represent one of k phonemes. You are given a list of scores for all the k phonemes
for each sound segment. For every pair of phonemes, a score for how likely one comes
after the other is also given.
Input:

1. n: number of sound segments

2. k: number of phonemes

3. a[i, j]: score of assigning phoneme j to sound segment i, in which ∀1 <= i <= n,
∀1 <= j <= k.

4. b[i, j]: score of phoneme j appear immediately after phoneme i. ∀1 <= i <= k,
∀1 <= j <= k.

Goal: We want to obtain sequence v[1...n], in which v[i]∈ 1,2, ...,k. v[i] is the phoneme
assigned to sound segment i.
More specifically, we wish to obtain:

argmax
v

∑
n
i=1 a[i,v[i]]+∑i=1 n−1b[v[i],v[i+1]]

State: f[i, j] refers to the max score for the first i sound segments while sound segment
i is phoneme j.

Transition Function:

f [i, j] = max
p=1,2...k

(f [i−1, p]+b[p, j])+a[i, j]

Base Case f [1, j] = a[1, j]
Algorithm:

Algorithm 1 Viterbi Algorithm
f [i, j] = a[i, j] for all j
for i = 2 to n:

for j = 2 to k:
evaluate transition function f[i,j]

return max
j=1,...,k

f [n, j]

Running Time:

O(n∗ k)(number of possible states) * O(k)(time to compute each state)

2

