Lecture 9: Greedy Algorithm. 3

Scriber: Xiaoming Liu

Feb 9, 2020

1 Horn-SAT

Problem statement: Given a set of Horn clauses, determine whether there exists an assignment to variables such that all clauses are satisfied.

Proof.

If algorithm outputs a solution, by design of algorithm, the solution must satisfy all clauses $(x_1, x_2, x_3, ..., x_n)$.

If the algorithm outpus no solution, assume towards contradiction, there is a satisfying assignment $(x'_1, x'_2, x'_3, ..., x'_n)$. Let $i_1, i_2, ..., i_k$ be the ordering in which the algorithm sets the variables to be true.

- 1. if $(x'_{i_1}, x'_{i_2}, x'_{i_3}, ..., x'_{i_k})$ are all true, let C be the type 3 clause that assignment $(x_1, x_2, x_3, ..., x_n)$ violates, the variables in C must in $(x'_{i_1}, x'_{i_2}, x'_{i_3}, ..., x'_{i_k})$. Since X'_{i_j} is also true for j = 1, 2, ..., k, C must be violated by X'_i . Thus, there is a contradiction.
- 2. Let i_j be the first variable where X_{i_j} is true and X'_{i_j} is false. When X_{i_j} were set to true. There are two possible cases.
 - (a) X_{i_i} is set to true by a type 2 clause.
 - (b) X_{i_i} is set to true by a type 1 clause.

In both sub-cases, this particular clause will be violated by (x_i') . Thus, there is a contradiction.

2 Huffman Tree

Problem statement: Given a long string with n different characters in alphabet, find a way to encode these characters into binary codes that minimizes the length.

Algorithm

- 1. REPEAT
- 2. Select two characters with smallest frequencies
- 3. Merge them into a new character, whose frequency is the sum.

4. UNTIL (there is only one character)

Running Time:

- Naive implementation: O(n².
 n 1, every iterations reduces number of characters by 1 O(n) for each iteration.
- 2. Priority Queue/Heap Implementation: O(nlogn)

Proof Of Correctness:

Induction Hypothesis: Huffman Tree algorithm finds an optimal encoding for all alphabets of size at most n.

Base Case: When n = 1, there is only one solution with cost 0.

Induction Step:

Assume induction hypothesis is true for n, consider an alphabet of size n+1, assume towards contradiction that Hoffman Tree algorithm does not find the optimal solution, let T_{alg} be the tree found by the algorithm and T_{opt} be the tree found by OPT, and i, j be the first two characters that the algorithm merged.

If i, j are not children of the same node in T_{opt} :

Let i', j' be the two nodes at the highest depth in T_{opt} that share the same parent. Let T'_{opt} be a solution where i and j are swapped with i' and j' in T_{opt} .

Let d_i be the depth of i in T_{opt} , and similarly for d_j , d'_i and d'_j . We have thus:

$$cost(T'_{opt}) = cost(T_{opt}) - (W_i * d_i + W_j * d_j + W_{i'}d_{i'} + W_{j'} * d_{j'}) + (W_i * d_{i'} + W_{j'} * d_{j'} + W_{i'}d_i + W_{j'} * d_j)$$

$$= cost(T_{opt}) - (W_{i'} - W_i))(d_{i'} - d_i) - (W_{j'} - W_j))(d_{j'} - d_j)$$

$$<= cost(T_{opt})$$

Therefore, T'_{opt} is also an optimal solution.

Now that we know there is always an optimal solution that merges i and j, the problem reduces to an alphabet of size n. By induction hypothesis, Hoffman tree algorithm is optimal for this instance. Therefore, $cost(T_{alg})cost(T'_{opt})cost(T_{opt})$. Thus, it contradicts with the assumption that T_{alg} is optimal.