
Lecture 9: Greedy Algorithm. 3

Scriber: Xiaoming Liu

Feb 9, 2020

1 Horn-SAT
Problem statement: Given a set of Horn clauses, determine whether there exists an
assignment to variables such that all clauses are satisfied.
Proof:
If algorithm outputs a solution, by design of algorithm, the solution must satisfy all
clauses (x1,x2,x3, ...,xn).
If the algorithm outpus no solution , assume towards contradiction, there is a satisfying
assignment (x′1,x

′
2,x
′
3, ...,x

′
n). Let i1, i2, ..., ik be the ordering in which the algorithm

sets the variables to be true.

1. if (x′i1 ,x
′
i2 ,x
′
i3 , ...,x

′
ik) are all true, let C be the type 3 clause that assignment

(x1,x2,x3, ...,xn) violates, the variables in C must in (x′i1 ,x
′
i2 ,x
′
i3 , ...,x

′
ik). Since

X ′i j
is also true for j = 1,2, ...,k, C must be violated by X ′i . Thus, there is a

contradiction.

2. Let i j be the first variable where Xi j is true and X ′i j
is false. When Xi j were set to

true. There are two possible cases.

(a) Xi j is set to true by a type 2 clause.

(b) Xi j is set to true by a type 1 clause.

In both sub-cases, this particular clause will be violated by (x′i). Thus, there is a
contradiction.

2 Huffman Tree
Problem statement: Given a long string with n different characters in alphabet, find a
way to encode these characters into binary codes that minimizes the length.
Algorithm

1. REPEAT

2. Select two characters with smallest frequencies

3. Merge them into a new character, whose frequency is the sum.

1



4. UNTIL (there is only one character)

Running Time:

1. Naive implementation: O(n2.
n - 1, every iterations reduces number of characters by 1
O(n) for each iteration.

2. Priority Queue/Heap Implementation: O(nlogn)

Proof Of Correctness:
Induction Hypothesis: Huffman Tree algorithm finds an optimal encoding for all al-
phabets of size at most n.

Base Case: When n = 1,there is only one solution with cost 0.

Induction Step:
Assume induction hypothesis is true for n, consider an alphabet of size n+ 1, assume
towards contradiction that Hoffman Tree algorithm does not find the optimal solution,
let Talg be the tree found by the algorithm and Topt be the tree found by OPT, and i, j
be the first two characters that the algorithm merged.
If i, j are not children of the same node in Topt :
Let i′, j′ be the two nodes at the highest depth in Topt that share the same parent. Let
T ′opt be a solution where i and j are swapped with i′ and j′ in Topt .
Let di be the depth of i in Topt , and similarly for d j, d′i and d′j. We have thus:

cost(T ′opt) = cost(Topt)− (Wi ∗di +Wj ∗d j +Wi′di′ +Wj′ ∗d j′)+(Wi ∗di′ +Wj′ ∗d j′ +Wi′di +Wj′ ∗d j)

= cost(Topt)− (Wi′ −Wi))(di′ −di)− (Wj′ −Wj))(d j′ −d j)

<= cost(Topt)

Therefore, T ′opt is also an optimal solution.
Now that we know there is always an optimal solution that merges i and j, the problem
reduces to an alphabet of size n. By induction hypothesis, Hoffman tree algorithm is
optimal for this instance. Therefore, cost(Talg)cost(T ′opt)cost(Topt). Thus, it contra-
dicts with the assumption that Talg is optimal.

2


