
1

Particle Filters

Ron Parr
CompSci 370

Department of Computer Science
Duke University

Outline

• Problem: Track state over time
– State = position, orientation of robot (condition of

patient, position of airplane, status of factory, etc.)
• Challenge: State is not observed directly
• Solution: Tracking using a model

– Exact tracking (previous lecture) not always possible
for large or continuous state spaces

– Approximate tracking using sampling (this lecture)

2

Applications

• Activity recognition by mobile devices
(hidden state is the activity)

• Robot self localization
(hidden state is robot position, orientation)

• Tracking objects with limited observations
(tracking pedestrians with/cars with surveillance
cameras, tracking ghosts when Pac-Man has a
limited field of view)

Recall Bayes Net View of HMMs

S0 S1

E0 E1

Note: These are random variables, not states!

3

Recall Sampling Approach to BNs

• Treat Bayes net as a “generative model”
• Sample variables with no unsampled parents
• Marginal probabilities are relative frequencies in

population of samples
• Challenges:

– In tracking, you are never “done” sampling
– Observations may be continuous – probability 0 that

sampled observation will match actual one

Idea: Sample in batches

S0 S1

E0 E1

Batch of
n samples

Instead of
Rejection
Sampling,
Weight samples
By p(E|S)

Batch of
n samples

Instead of
Rejection
Sampling,
Weight samples
By p(E|S)

4

Toy Example
• Robot is monitoring door to the AI lab
• D = variable for status of door (True = open)
• Initially we will ignore observations

• Define Markov model for behavior of door:

P(dt+1|dt)= 0.8

P(dt+1|dt)= 0.3

2

Applications

• Activity recognition by mobile devices
(hidden state is the activity)

• Robot self localization
(hidden state is robot position, orientation)

• Tracking objects with limited observations
(tracking pedestrians with/cars with surveillance
cameras, tracking ghosts when Pac-Man has a
limited field of view)

Toy Example
• Robot is monitoring door to the AI lab
• D = variable for status of door (True = open)
• Initially we will ignore observations

• Define Markov model for behavior of door:

P(dt+1|dt)= 0.8

P(dt+1|dt)= 0.3

Problem

Suppose we believe the door was open with prob. 0.7 at time t.

What is the prob. that it will be open at time t+1?
P(dt+1|dt)= 0.8

P(dt+1|dt)= 0.3

P(dt+1)=P(dt+1|dt)P(dt)+P(dt+1|dt)P(dt)

= 0.8*0.7+0.3*0.3= 0.65

Staying open Switching from closed to open

5

Example
• Pick n=1000

– 700 door open samples
– 300 door closed samples

• For each sample generate a next state
– For open samples use prob. 0.8 for next state open
– For closed samples use prob. 0.3 for next state open

• Count no. of open and closed next states

• Can prove that in limit of large n, our count will equal true
probability (0.65)

P(dt+1|dt)= 0.8

P(dt+1|dt)= 0.3

Example Revisited

• D = Door status
• O = Robot’s observation of door status
• Observations may not be completely reliable!

P(dt+1|dt)= 0.8

P(dt+1|dt)= 0.3

P(o|d)= 0.6
P(o|d)= 0.2

6

Modified Sampling

• Problem: How do we adjust sampling to
handle evidence?

• Solution: Weight each sample by the
probability of the observations

• Called importance sampling (IS), or
likelihood weighting (LW)

• Does the right thing for large n

Example with evidence

• Suppose we observe door closed at t+1

• Pick n=1000
– 700 door open samples

– 300 door closed samples

• For each sample generate a next state
– For open samples use prob. 0.8 for next state open

– For closed samples use prob. 0.3 for next state open

– If next state is open, weight by 0.4

– If next state is closed, weight by 0.8

• Compute weighted sum of no. of open and closed states

P(dt+1|dt)= 0.8

P(dt+1|dt)= 0.3

P(o|d)= 0.6
P(o|d)= 0.2

7

Problems with IS (LW)
• Sequential importance sampling (SIS) does the right

thing for the limit of large numbers of samples
• Problems for finite numbers of samples:

– Effective sample size (total weight of samples) drops
– Eventually

• Something unlikely happens, or
• A sequence of individually somewhat likely events has the effect of a

single unlikely event, and
• Population of samples drifts away from reality

• Over time: Estimates become unreliable

Solution: SISR (PF)
Sequential Importance Sampling with Resampling = Particle Filter

• Maintain n samples for each time step

• Repeat n times:
– Draw sample from p(St)

(according to current weights)
– Simulate transition to St+1

– Weight samples by evidence & normalize

• Note: Works for continuous as well as discrete vars!

8

Particle Filter for Trajectory Tracking

t=0

Particle Filter for Trajectory Tracking

t=0 t=1

Motion model
P(St+1|St)

9

Particle Filter for Trajectory Tracking

t=0

Measurement
Multiply by P(o|St+1)

t=1

Motion model
P(St+1|St)

Particle Filter for Trajectory Tracking

t=0

Measurement
Multiply by P(o|St+1)

t=1
Updated state

Motion model
P(St+1|St) resample

Shifted to show
multiplicity.
Same state
may be resampled
Multiple times.

10

Example: Robot Localization

• Particle filters combine:
– A model of state change
– A model of sensor readings

• To track objects with hidden state over time

• Robot application:
– Hidden state: Robot position, orientation
– State change model: Robot motion model
– Sensor model: Sonar/LiDAR error model

• Note: Robot is tracking itself!

Main Loop

• Sample n robot states
• For each state

– Simulate next state (action model)
– Weight states (observation model)
– Normalize

• Repeat

11

Robot States

• Robot has X,Y,Z,q
• Usually ignore z

– assume floors are flat
– assume robot stays on one floor

• Form of samples
– (Xi,Yi,qi,pi)
–
!!!!

€

pi = 1
i
∑

Main Loop

• Sample n robot states
• For each state

– Simulate next state (action model)
– Weight states (observation model)
– Normalize

• Repeat

12

Main Loop

• Sample n robot states
• For each state

– Simulate next state (action model)
– Weight states (observation model)
– Normalize

• Repeat

Motion Model
• How far has the robot traveled?
• Robots have (noisy) odometers:

Actual path was a closed loop on the second floor!

13

Odometer Model
• Odometer is:

– Relatively accurate model of wheel turn

– Very inaccurate model of actual movement

• Actual position = odometer X,Y,q + random noise

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-10 -5 0 5 10

(1/(2*pi)) * exp(-(x**2)/2)

Classic,
Bell-shaped
Curve
(normal distribution)

Simulation Implementation
• Start with odometer readings
• Add linear correction factor

– X = ax*X+bx

– Y = ay*Y+by

– q = aq*q+bq
• Add noise from the normal distribution

– X = X + N(0,sx)
– Y = Y + N(0,sx)
– q = q + N(0,sq)

Linear correction
(determined experimentally)

N(µ,s) returns random noise
from normal distribution with
mean µ and standard deviation s
(standard deviation determined experimentally)

14

Main Loop

• Sample n robot states
• For each state

– Simulate next state (action model)
– Weight states (observation model)
– Normalize

• Repeat

Internal Map Representation

LSRC Second Floor

Recycling
bins

Printer

Printer

Closet

Table,
chair
legs

15

Laser Error Model
• Laser measures distance at 180 one degree increments in

front of the robot (height is fixed)

• Laser rangefinder errors also have a normal distribution

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-10 -5 0 5 10

(1/(2*pi)) * exp(-(x**2)/2)

Distance from
closest occupied
square to endpoint
of laser cast

Prob. of
measurement

Laser Error Model Contd.
• Probability of error in measurement k for sample i (normal)

• xk is distance of laser endpoint to closest obstacle
• s is standard deviation in this measurement (estimated

experimentally), usually a few cm.

!!!!

€

pik (xk) =
1

σ 2π
e
−xk

2

2σ2

16

Laser Error Model Contd.
• Laser measurements are independent
• Weight of sample is product of errors:

• Note: Good to bound x to prevent a single bad
measurement from making pi too small

!!

€

pi = pik
k
∏

Main Loop

• Sample n robot states
• For each state

– Simulate next state (action model)
– Weight states (observation model)
– Normalize

• Repeat

17

Application to Games
• First Person Shooters (FPS)

– Your position is known to you
– Positions of bad guys or other players not fully observable to you

• Don’t know their movements when outside of your field of view
• May get indirect indications of their position through sounds,

behavior of other characters

• Pacman variant
– Pacman knows where he is
– Can eat ghosts, but

• Ghosts are invisible to him
• Ghosts make sounds – can (noisily) estimate distance, but not

direction based upon sound

Summary

• HMMs provide mathematical basis for tracking

• Exact solution intractable for large state spaces

• Particle filters approximate the exact HMM solution
using sampling, simulation, weighting

