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The epipolar geometry of a pair of cameras expresses the fundamental relationship between
any two corresponding points in the two image planes, and leads to a key constraint between the
coordinates of these points that underlies visual reconstruction. The first Section below describes
the epipolar geometry. The Section thereafter expresses the key constraint algebraically.

1 The Epipolar Geometry of a Pair of Cameras

Figure 1 shows the main elements of the epipolar geometry for a pair of cameras.
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Figure 1: Essential elements of the epipolar geometry of a camera pair.

The world point P and the centers of projection of the two cameras identify a plane in space,
the epipolar plane of point P. The Figure shows a triangle of this plane, delimited by the two
projection rays and by the baseline of the camera pair, that is, the line segment that connects the
two centers of projection.1

If the image planes are thought of extending indefinitely, the baseline intersects the two image
planes at two points called the epipoles of the two images. In particular, if the cameras are arranged
so that the baseline is parallel to an image plane, then the corresponding epipole is a point at infinity.

1We use the term “baseline” for the line segment. However, this term is also often used for the length of this
segment, or even for the entire line through the two centers of projection.
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The epipoles are fixed points for a given camera pair configuration. With cameras somewhat
tilted towards each other, and with a sufficiently wide field of view, the epipoles would be inside
the image. Epipole eb in the image Ia taken by camera a would be literally the image of the center
of projection of camera b in Ia, and vice versa. Even if the two cameras do not physically see each
other, we maintain this description in an abstract sense: each epipole is the image of one camera
in the other image, even if this point is outside the field of view. Note that the epipole in image Ia
is called eb, because it is the image of camera b from camera a. Similar considerations hold for ea.

The epipolar plane intersects the two image planes along the two epipolar lines of point P,
each of which passes by construction through one of the two projection points pa and pb and one
of the two epipoles. Thus, epipolar lines come in corresponding pairs, and the correspondence is
established by the single epipolar plane for the given point P.

For a different world point P, the epipolar plane typically changes, and with it do the image
projections of P and the epipolar lines. However, all epipolar planes contain the baseline. Thus,
the set of epipolar planes forms a pencil of planes supported by the line through the baseline, and
the epipoles are fixed.

Suppose now that we are given the two images Ia and Ib taken by cameras a and b and a point pa
in Ia. If all we have is the images, we do not know where the corresponding point pb is in the other
image, nor where the world point P is, except that P must be somewhere along the projection ray
of pa. However, if in addition we know the relative position and orientation of the two cameras, we
know where the two centers of projection are relative to each other. The two centers of projection
and point pa identify the epipolar plane, and this in turn determines the epipolar line of point pa
in image Ib. The point pb must be somewhere on this line. This same construction holds for any
other point pa on the epipolar line of P in image Ia. We have not pinned down pb, but we have
narrowed down its possible positions to be somewhere on a known line.

To understand what the epipolar constraint expresses, consider that the projection rays for two
arbitrary points in the two images are generically two skew lines in space. The projection rays
of two corresponding points, on the the other hand, are coplanar with each other and with the
baseline, because they belong to the same epipolar plane. The epipolar geometry captures this key
constraint, and pairs of point that do not satisfy the constraint cannot possibly correspond to each
other.

2 The Essential Matrix

This section expresses the epipolar constraint described in the previous section algebraically.

Coordinate Systems. The canonical reference system for camera a is a right-handed Cartesian
coordinate system with its origin at the center of projection of a, its positive Z axis pointing towards
the scene along the optical axis of the lens, and its X axis pointing to the right2 along the rows
of the camera sensor. As a consequence, the Y axis points downwards along the columns of the
sensor. The canonical reference system for camera b is defined similarly. Let

apa =

 axa
aya
f

 and bpb =

 bxb
byb
f


2When the camera is upside-up and viewed from behind it, as when looking through its viewfinder.
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denote the coordinates, relative to each camera’s canonical reference system, of the image points
that are the projections of the same world point P. Please pay attention to this definition: apa is a
point on the image plane, but is here viewed as a point in three-dimensional space. Like all points
on the image plane of camera a, its third (Z) coordinate in the camera’s reference system is f , the
camera’s focal distance. Similar considerations hold for bpb. Also, since each point is observed in
its own camera, the reference system (left superscript) is that of the camera the point appears in
(right subscript).

Finally, let
bp = aRb(

ap− atb) (1)

be the rigid transformation between the two reference systems. As we know, the reverse transfor-
mation is

ap = bRa(
bp− bta) where bRa = aRTb and bta = −aRbatb . (2)

The Essential Matrix. When expressed in the reference system of camera a, the directions of
the projection rays through corresponding image points pa and pb are along the vectors

apa and bRa
bpb ,

and the baseline in this reference system is along the translation vector atb.
To simplify the notation in the manipulations that follows, we define

a = apa , b = bpb , R = aRb , t = atb , e = aeb

to be the image measurements of the two corresponding points (each viewed as a three-dimensional
point in its own camera’s reference system), the parameters of the coordinate transformation from
camera a to camera b, and the epipole of b in a. Then, the rotation and translation in the reverse
direction are

RT = bRa and −Rt = bta .

Coplanarity of the projection-ray directions a and RTb and baseline t can be expressed by
stating that their triple product is zero:

(RTb)T (t× a) = 0 that is, bTR (t× a) = 0 or bTR [t]×a = 0

where t = (tx, ty, tz)
T and

[t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0


is the skew-symmetric matrix that expresses the cross-product of t with any other vector.

In summary, for corresponding points a and b the following equation holds:

bT E a = 0 (3)

where
E = R [t]× . (4)

Equation (3) is called the epipolar constraint and the matrix E is called the essential matrix.
Equation (3) expresses the coplanarity between any two points a and b on the same epipolar plane
for two fixed cameras.
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If point b is fixed in image Ib, then the product

λT = bT E (5)

is a fixed row vector. If the fixed point a is replaced by a variable vector x in image Ia, then
equation (3) can be written as follows:

λTx = 0 . (6)

This is a single linear equation in the coordinates of x, and therefore represents a line in the image
plane of Ia. The point a satisfies this equation by equation (3). Also the translation vector t
satisfies equation (6), because

λT t = bT Et = bT R [t]× t = 0

(recall that the cross product of a vector with itself is zero). The epipole e in image Ia is on the
baseline, and therefore its coordinates in the reference frame of camera a are proportional to those
of t, so e satisfies equation (6) as well. Thus, this equation represents the line through a and e,
that is, the epipolar line of b in image Ia: If we knew the essential matrix E for a pair of cameras,
then we could find the equation of the epipolar line for every point b in Ib.

This state of affairs must of course hold the other way around as well, when the roles of the
two cameras are switched. Before seeing this in more detail, however, we explore the structure of
the essential matrix E.

The Structure of E. First, this matrix cannot be full rank, as the following geometric argument
proves: Since the epipole in image Ia belongs to all epipolar lines in Ia, not just one, the vector e
of its coordinates must satisfy equation (6) regardless of what point b is used in the definition (5)
of λ. This can happen only if e is in the null space of E, so this matrix must be degenerate.

The degeneracy of E can also be shown algebraically. More specifically, it is easy to see that
the rank of E is two for any nonzero t. To this end, note first that the matrix [t]× has rank two if
t is nonzero, because

[t]×t = t× t = 0

and the null space of [t]× is exactly the line through the origin and along t. Since R is full rank,
also the product E = R [t]× has rank 2 if t 6= 0. In addition, the null space of E and that of [t]×
are the same, because the solutions to the two systems

[t]×x = 0 and E x = 0

are the same, since R is full rank. Therefore, the rank of E is 2 if t is nonzero, and the null space
of E is the line spanned by t (or equivalently e).

There is more to the structure of E. For any vector v orthogonal to t, the definition of cross
product yields

‖[t]×v‖ = ‖t‖ ‖v‖ .

The vector v is orthogonal to t if it is in the row space of [t]×, and the equation above then shows
that the matrix [t]× maps all unit vectors (‖v‖ = 1) in its row space into vectors of magnitude
‖t‖. From the definition of SVD, this means that the two nonzero singular values of [t]× are equal
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to each other.3 Since multiplication by an orthogonal matrix (R) does not change the matrix’s
singular values, we conclude that the essential matrix E has two nonzero singular values equal to
each other, and one zero singular value. The right singular vector v3 corresponding to the zero
singular value of E is a unit vector along the epipole and the translation vector,

v3 ∼ e ∼ t . (7)

In these expressions, the symbol ‘∼’ means “proportional to,” or “equal up to a multiplicative
constant.” Since the two nonzero singular values of E are equal to each other, the corresponding
right singular vectors v1 and v2 are arbitrary, as long as they form an orthonormal triple with v3.

Scale and Epipoles at Infinity. Since the systems involving the essential matrix E are all
homogeneous, the translation vector t and the epipole e can only be found up to a scale factor. This
limitation is consistent with the fact that cameras fundamentally measure angles between projection
rays, and cannot measure lengths. For instance, if two images show a building, it is not possible to
determine from image measurements alone whether the pictures are of a real building taken from
two cameras, say, three meters apart, or they are images of a miniature building perhaps a hundred
times smaller, taken from two cameras that are three centimeters apart. Scale is irretrievably lost
in imaging, even if multiple cameras are used and as long as only the images are available. Of
course, if we knew, say, the length of the baseline, or the height of the building, then we could
determine the scale factor.

While this loss of scale is generally a disadvantage of passive imaging with cameras at unknown
positions, it has a positive consequence on the representation of epipoles and translation when the
baseline is parallel to the image plane of either camera.

To understand this observation, consider a situation in which the angle θ = θ0 between the
optical axis of camera a and the baseline is less than 90 degrees, as illustrated in Figure 2. The
orientation of camera b does not matter for this argument. Then, the baseline crosses the image
plane of camera a at the epipole e of b in image Ia, and the translation vector from a to b is
proportional to e:

e =

 ex0
ey0
1

 and t = c e

where c is some constant.
Now gradually increase the angle θ beyond θ0 by rotating the baseline away from the optical

axis. For simplicity, think of this rotation occurring in the plane that contains the optical axis and
e(θ0), so that the epipole e(θ) moves along the line ` between the principal point π0 of a and e(θ0).

Since the epipole is always in the image plane, its third coordinate is 1, and we have

e(θ) =

 ex(θ)
ey(θ)

1

 =

 h(θ)ex0
h(θ)ey0

1


where h(θ) is an increasing function of θ. When θ tends to π/2, the baseline becomes parallel to
the image plane of camera a. The scalar h(θ) tends to infinity, and the epipole moves infinitely far
away from π0.

3Since equation (3) is homogeneous, if E is an essential matrix then so is αE for any nonzero α. Therefore, the
common magnitude of the two nonzero singular values is arbitrary.
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Figure 2: When the angle θ between the optical axis of camera a and the baseline approaches π
2 ,

the baseline (that is, the line through a and along the translation vector t(θ)) becomes more and
more parallel to the image plane of camera a, and the epipole e(θ) tends to the point at infinity of
the line ` through the principal point π0 and e(θ0).

However, since the third right singular vector v3(θ) of the essential matrix has unit norm, it
represents the epipole e(θ)—and the translation t(θ)—only up to a constant. More specifically,

v3(θ) =
e(θ)

‖e(θ)‖
=

1√
1 + h2(θ) (e2x0 + e2y0)

 h(θ)ex0
h(θ)ey0

1


and we immediately see that

lim
θ→π/2

v3(θ) =
1√

e2x0 + e2y0

 ex0
ey0
0

 ,

a unit-norm vector as expected.
Thus, a singular vector v3 that has a third component equal to zero can be viewed as pointing

to an epipole e that is the point at infinity on the line `. Since t is proportional to v3 as well, we
see that t(π2 ) is also parallel to the image plane, consistently with the fact that for θ = π

2 camera b
is to the side of camera a, that is, in the plane z = 0 in the reference system of camera a.

In summary, the solution e or t provided by v3 is correct even when the baseline is parallel to
the image plane, as long as the epipole e is then interpreted as a point at infinity on the image
plane of camera a.

Switching Cameras. Suppose now that we fix a in image Ia but replace b by a varying vector
in Ib. Then we can repeat all the considerations above for the left null space and the left row space
of E. In particular, the product Ea for fixed a is a column vector, and equation (3) becomes the
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equation of the epipolar line in image Ib. The third left singular vector u3 of E is the direction
of the epipole ea in Ib in the reference frame of camera b. Rather than showing this through a
separate argument, we prove that ET is the essential matrix that would be obtained if the roles of
cameras a and b were reversed.

To this end, Table 1 shows the results both ways using full subscripts, to make sure we do not
confuse the two reference systems. To justify these results in the reverse direction, we then need
to show that

aETb = bEa ,

that is, that transposing one essential matrix yields the essential matrix in the opposite direction.
This result is a straightforward consequence of the invariance of the cross product to rotation,

(Rx)× (Ry) = R (x× y)

which can be restated as follows for cross-product matrices, thinking of x as fixed and y as variable:

[Rx]×R = R [x]× . (8)

Because [atb]× is skew-symmetric,

aETb = (aRb [atb]×)T = −[atb]×
aRTb .

From our discussion of rigid transformations, we also know that if

bp = aRb(
ap− atb)

then
ap = bRa(

bp− bta) where aRb = bRTa and atb = −bRabta .

Therefore,
aETb = [bRa

bta]×
bRa

and from equation (8)
aETb = bRa [bta]× = bEa

as promised.

Use of the Epipolar Constraint. The epipolar constraint (3) is repeated here for convenience,
using full notation for the essential matrix:

bT aEb a = 0

where a and b are corresponding points. This constraint is used in two different contexts. In stereo
vision, aRb and atb and therefore aEb are known. Given a point a in Ia, the epipolar constraint then
allows restricting the search for a corresponding point b to the epipolar line of a.

In visual reconstruction, on the other hand, several pairs (ai,bi) of corresponding points are
given, and aEb is unknown. Equation (3) for each pair of points yields a linear equation in the
entries of aEb. From this, aEb and then aRb and atb can be found, as we will see in a later note.
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For two cameras a and b with nonzero baseline, let

bp = aRb (ap− atb)

be the coordinate transformation between points ap in a and points bp in b, and let

ap = bRa (bp− bta) with aRb = bRTa and atb = −bRa bta

be the transformation in the reverse direction.
The essential matrix of the camera pair (a, b) is the matrix

aEb = aRb [atb]× where [t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0


and the essential matrix of the camera pair (b, a) is

bEa = aETb .

The epipole aeb is the image of the center of projection of camera b in image Ia and the
epipole bea is the image of the center of projection of camera a in image Ib. They satisfy

aEb
aeb = bEa

bea = 0 and also aEb
atb = bEa

bta = 0 .

A point apa in image Ia and its corresponding point bpb in image Ib, both written as 3D
vectors in their camera’s canonical reference system, satisfy the epipolar constraint

bpTb
aEb

apa = 0 .

This equation can also be written as follows:

λTb
apa = λTa

bpb = 0

where
λb = bEa

bpb and λa = aEb
apa

are the vectors of coefficients of the epipolar line of pb in image Ia and that of pa in image
Ib respectively.
Up to a nonzero and otherwise arbitrary multiplicative constant, the singular value decom-
position of aEb is

aEb ∼ UΣV T =
[

u1 u2 u3

]
diag(1, 1, 0)

[
v1 v2 v3

]T
where

v3 ∼ aeb ∼ atb and u3 ∼ bea ∼ bta

and u1, u2, v1, v2 are any vectors for which U and V become orthogonal.

Table 1: Definition and properties of the essential matrix.
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